Answer:
A , B, C
Explanation: D is a Diamagnetic
Answer:
ΔH for formation of 197g Fe⁰ = 1.503 x 10³ Kj => Answer choice 'B'
Explanation:
Given Fe₂O₃(s) + 2Al⁰(s) => Al₂O₃(s) + 2Fe⁰(s) + 852Kj
197g Fe⁰ = (197g/55.85g/mol) = 3.527 mol Fe⁰(s)
From balanced standard equation 2 moles Fe⁰(s) => 852Kj, then ...
3.527 mole yield (a higher mole value) => (3.527/2) x 852Kj = 1,503Kj (a higher enthalpy value).
______
NOTE => If 2 moles Fe gives 852Kj (exo) as specified in equation, then a <u>higher energy value</u> would result if the moles of Fe⁰(s) is <u>higher than 2 moles</u>. The ratio of 3.638/2 will increase the listed equation heat value to a larger number because 197g Fe⁰(s) contains more than 2 moles of Fe⁰(s) => 3.527 mole Fe(s) in 197g. Had the problem asked for the heat loss from <u>less than two moles Fe⁰(s)</u> - say 100g Fe⁰(s) (=1.79mole Fe⁰(s)) - then one would use the fractional ratio (1.79/2) to reduce the enthalpy value less than 852Kj.
Answer:
The three isomers having the molecular formula
are drawn in the figure below.
Explanation:
Answer:
223 g O₂
Explanation:
To find the mass of oxygen gas needed, you need to (1) convert moles Al to moles O₂ (via the mole-to-mole ratio from reaction coefficients) and then (2) convert moles O₂ to grams O₂ (via the molar mass). When writing your ratios/conversions, the desired unit should be in the numerator in order to allow for the cancellation of the previous unit. The final answer should have 3 sig figs because the given value (9.30 moles) has 3 sig figs.
4 Al + 3 O₂ ----> 2 Al₂O₃
^ ^
Molar Mass (O₂): 32.0 g/mol
9.3 moles Al 3 moles O₂ 32.0 g
------------------- x --------------------- x -------------------- = 223 g O₂
4 moles Al 1 mole
All of the questions here are pertaining to the colligative properties of a solution and the preparation of solutions. Maybe, it would be best if you understand the equations to be used in order to answer these questions.<span>
Freezing point depression or Boiling point elevation:
</span><span>ΔT = -K (m) (i)
</span>ΔT is the change in the freezing point or the boiling point not the freezing point/boiling point. Therefore, it should be added to the original value of the property of the solvent.
<span>
K is a constant called the molal freezing point depression constant and for the boiling point is the boiling point elevation constant. It is a property of the solvent.
</span><span>
m is the concentration of the solute in the solvent in terms of molality or kg solute/kg solvent.
</span><span>
i is the vant hoff factor which will represent the number of ions which the solute dissociates when in solution.</span>