Solar Power, Microbial fuel cell. These two and I am sure other ways as well Solar power as you guess use the sun as a power energy source with non-waste and long lasting use. Microbial fuel uses the bacteria aka decomposers turn the sugars, nutrients into rich soil while also releasing electrons back into the soil and can be used as a energy source.
Noble gases
Explanation:
Electronic configuration 1s² 2s² 2p⁶
The element belongs to the group of the noble gases.
- The noble gases have complete outer shell configuration of their atoms.
- we can infer that the configuration above is for an element in the p-block because the last sub-level filled is the p-orbital.
- The elements therefore belongs to the p-block
- The block is from group 111A to O
- Only the halogens and noble gases fits this picture from the option.
- The outer most p-subshell have three orbitals requiring 6 electrons to fill them up.
- This makes a complete and stable configuration.
- The highest energy level of 2 is also made up of 8 electrons, an octet.
- This is why we can conclude that they are noble gases.
Learn more:
Noble gas brainly.com/question/1781595
#learnwithBrainly
In mitosis, cells are divided to make 2 cells, while in meiosis, cells are divided to make 4 cells.
Answer:
The correct option is e.
Explanation:
p-value is the probability value for a given statistical model, the probability that, when the null hypothesis is true.
For two two samples the formula of test statistics is

where,
is sample mean
is population mean.
is standard deviation.
n is sample size.
Variance is the square of standard deviation.
It means variance, mean, numbers of samples is used in calculation of p-value.
Degree of freedom define the shape of the t-distribution that your t-test uses to calculate the p-value.

p-value of a statistical test depends on all of the following, except median.
Therefore the correct option is e.
P = 11.133 atm (purple)
T = -236.733 °C(yellow)
n = 0.174 mol(red)
<h3>Further explanation </h3>
Some of the laws regarding gas, can apply to ideal gas (volume expansion does not occur when the gas is heated),:
- Boyle's law at constant T, P = 1 / V
- Charles's law, at constant P, V = T
- Avogadro's law, at constant P and T, V = n
So that the three laws can be combined into a single gas equation, the ideal gas equation
In general, the gas equation can be written

where
P = pressure, atm
V = volume, liter
n = number of moles
R = gas constant = 0.08206 L.atm / mol K
T = temperature, Kelvin
To choose the formula used, we refer to the data provided
Because the data provided are temperature, pressure, volume and moles, than we use the formula PV = nRT
T= 10 +273.15 = 373.15 K
V=5.5 L
n=2 mol

V=8.3 L
P=1.8 atm
n=5 mol

T = 12 + 273.15 = 285.15 K
V=3.4 L
P=1.2 atm
