The balanced equation is Mg + 2AgNO₃ ⟶ Mg(NO₃)₂ + 2Ag
Step 1. Write the <em>unbalanced equation
</em>
Mg + AgNO₃ ⟶ Mg(NO₃)₂ + Ag
Step 2. Start with the<em> most complicated-looking formula</em> [Mg(NO₃)₂] and balance its atoms.
Mg: Already balanced —1 atom each side.
N: We need 2 N on the left. Put a 2 in front of AgNO₃.
1Mg + 2AgNO₃ ⟶ 1Mg(NO₃)₂ + Ag
O: Already balanced —6 atom6 each side.
Step 3: Balance <em>Ag</em>
We have 2Ag on the left. We need 2Ag on the right.
1Mg + 2AgNO₃ ⟶ 1Mg(NO₃)₂ + 2Ag
Complete Question:
Ions to calculate the p-values: Na⁺, Cl⁻, and NH₄⁺
Answer:
pNa = 0.307
pCl = 0.093
pNH₄ = 0.503
Explanation:
The p-value is calculated by the antilog of the concentration of the substance of interest. For example, pH = -log[H⁺]. Thus, first, let's find the ions concentration.
Both substances are salts that solubilize completely, thus, by the solution reactions:
NaCl → Na⁺ + Cl⁻
NH₄Cl → NH₄⁺ + Cl⁻
So, for both reactions the stoichiometry is 1:1:1 and the concentration of the ions is equal to the concentration of the salts.
[Na⁺] = 0.493 M
[Cl⁻] = 0.493 + 0.314 = 0.807 M
[NH₄⁺] = 0.314 M
The p-values are:
pNa = -log[Na⁺] = -log(0.493) = 0.307
pCl = -log[Cl⁻] = -log(0.807) = 0.093
pNH₄ = -log[NH₄⁺] = -log(0.314) = 0.503
The transuranium synthesis process involves creating a transuranium element through the transmutation of a lighter element.
So, the answer would be the C the transmutation of a lighter element.
Transuranium elements are the elements with atomic numbers greater than 92. All of these elements are unstable and decay radioactively into other elements.
Diamond and graphite are made of carbon. So is most of charcoal.
As you go down a group on the periodic table, atomic radii tend to increase because elements with larger atomic numbers have more occupied electron levels which take up more space surrounding the nucleus.
I hope this helps.