Answer:
a) t=1s
y = 10.1m
v=5.2m/s
b) t=1.5s
y =11.475 m
v=0.3m/s
c) t=2s
y =10.4 m
v=-4.6m/s (The minus sign (-) indicates that the ball is already going down)
Explanation:
Conceptual analysis
We apply the free fall formula for position (y) and speed (v) at any time (t).
As gravity opposes movement the sign in the equations is negative.:
y = vi*t - ½ g*t2 Equation 1
v=vit-g*t Equation 2
y: The vertical distance the ball moves at time t
vi: Initial speed
g= acceleration due to gravity
v= Speed the ball moves at time t
Known information
We know the following data:
Vi=15 m / s

t=1s ,1.5s,2s
Development of problem
We replace t in the equations (1) and (2)
a) t=1s
=15-4.9=10.1m
v=15-9.8*1 =15-9.8 =5.2m/s
b) t=1.5s
=22.5-11.025=11.475 m
v=15-9.8*1.5 =15-14.7=0.3m/s
c) t=2s
= 30-19.6=10.4 m
v=15-9.8*2 =15-19.6=-4.6m/s (The minus sign (-) indicates that the ball is already going down)
Answer:
they share electrons between them.
Explanation:
taking the test rn lol i think its right
D = 1/f, where D is the power in diopters and f is the focal length in meters.
D=1/20
<u>D=0.05</u>
Saying english so we can help u
Answer:
Explanation:
The amplitude of resultant wave as the result of overlap of two waves depends upon the phase difference between the two. If the waves meet crest to trough , the phase difference is 180 degree or they are in opposite phase . Hence they will destroy each other . The amplitude of resultant wave can be obtained by subtracting the amplitudes of two waves. They will interfere destructively.
Amplitude of resultant gives waves = 4.6 - 2 = 2.6 cm.