Part (a)
There are 7 red out of 7+3 = 10 total
<h3>Answer: 7/10</h3>
==========================================================
Part (b)
We have 3 green out of 10 total
<h3>Answer: 3/10</h3>
==========================================================
Part (c)
3/10 is the probability of getting green on any selection. This is because we put the first selection back (or it is replaced with an identical copy)
So (3/10)*(3/10) = 9/100 is the probability of getting two green in a row.
<h3>Answer: 9/100</h3>
==========================================================
Part (d)
Similar to part (c) we have 7/10 as the probability of getting red on each independent selection.
(7/10)*(7/10) = 49/100
<h3>Answer: 49/100</h3>
==========================================================
Part (e)
7/10 is the probability of getting red and 3/10 is the probability of getting green. Each selection is independent of any others.
(7/10)*(3/10) = 21/100
<h3>Answer: 21/100</h3>
==========================================================
Part (f)
We have the exact same set up as part (e). Notice how (7/10)*(3/10) is the same as (3/10)*(7/10).
<h3>Answer: 21/100</h3>
3.) 2 × 0.5 = 1
4.) -2 × -0.5 = 1
Answer:
54 and 30
Step-by-step explanation:
84÷2=42-12=30
42+12=54
<h3>
Answer: Check out the diagram below.</h3>
Explanation:
Use your straightedge to extend segment AB into ray AB. This means you'll have it start at A and go on forever through B. Repeat these steps to turn segment AC into ray AC.
The two rays join at the vertex angle A. Point A is the center of the universe so to speak because it's the center of dilation. We consider it an invariant point that doesn't move. Everything else will move. In this case, everything will move twice as much compared to as before.
Use your compass to measure the width of AB. We don't need the actual number. We just need the compass to be as wide from A to B. Keep your compass at this width and move the non-pencil part to point B. Then mark a small arc along ray AB. What we've just done is constructed a congruent copy of segment AB. In other words, we've just double AB into AB'. This means the arc marking places point B' as the diagram indicates.
The same set of steps will have us construct point C' as well. AC doubles to AC'
Once we determine the locations of B' and C', we can then form triangle A'B'C' which is an enlarged copy of triangle ABC. Each side of the larger triangle has side lengths twice as long.
Note: Points A and A' occupy the same exact location. As mentioned earlier, point A doesn't move.