25.2 / 34.6 x 100
which would get you 73%
if you found my answer helpful pls give brainliest
Answer:
113 g NaCl
Explanation:
The Ideal Gas Law equation is:
PV = nRT
In this equation,
> P = pressure (atm)
> V = volume (L)
> n = number of moles
> R = 8.314 (constant)
> T = temperature (K)
The given values all have to due with the conditions fo F₂. You have been given values for all of the variables but moles F₂. Therefore, to find moles F₂, plug each of the values into the Ideal Gas Law equation and simplify.
(1.50 atm)(15.0 L) = n(8.314)(280. K)
2250 = n(2327.92)
0.967 moles F₂ = n
Using the Ideal Gas Law, we determined that the moles of F₂ is 0.967 moles. Now, to find the mass of NaCl that can react with F₂, you need to (1) convert moles F₂ to moles NaCl (via the mole-to-mole ratio using the reaction coefficients) and then (2) convert moles NaCl to grams NaCl (via molar mass from periodic table). It is important to arrange the ratios/conversions in a way that allows for the cancellation of units (the desired unit should be in the numerator).
1 F₂ + 2 NaCl ---> Cl₂ + 2NaF
Molar Mass (NaCl): 22.99 g/mol + 35.45 g/mol
Molar Mass (NaCl): 58.44 g/mol
0.967 moles F₂ 2 moles NaCl 58.44 g
---------------------- x ----------------------- x ----------------------- = 113 g NaCl
1 mole F₂ 1 mole NaCl
Answer:
1) Ethanol
Explanation:
If we will have <u>interactions</u> we will need more <u>energy</u> to break them in order to go from liquid to gas. If we need more <u>energy</u>, therefore, the <u>temperature will be higher</u>.
In this case, we can discard the <u>propanone</u> because this molecule don't have the ability to form <u>hydrogen bonds</u>. (Let's remember that to have hydrogen bonds we need to have a hydrogen bond to a <u>heteroatom</u>, O, N, P or S).
Then we have to analyze the hydrogen bonds formed in the other molecules. For ethanol, we will have only <u>1 hydrogen bond</u>. For water and ethanoic acid, we will have <u>2 hydrogen bonds</u>, therefore, we can discard the ethanol.
For ethanoic acid, we have 2 <u>intramolecular hydrogen bonds</u>. For water we have 2 <u>intermolecular hydrogen bonds</u>, therefore, the strongest interaction will be in the <u>ethanoic acid</u>.
The<u> closer boiling point</u> to the 75ºC is the <u>ethanol</u> (boiling point of 78.8 ºC) therefore these molecules would have <u>enough energy</u> to <u>break</u> the hydrogen bonds and to past from<u> liquid to gas</u>.
It is Vitamin D, hope that helps
The correct answer would be the last one.