Answer:
Explanation:
All the energy in oil, gas, and coal originally came from the sun, captured through photosynthesis.for example when we burn wood to release energy that trees capture from the sun, we burn fossil fuels to release the energy that ancient plants captured from the sun. We can think of this energy as having been deposited in a natural solar power bank over millions of years.
So, in one sense, gasoline-burning cars, coal-burning power plants, and homes heated by natural gas are all solar powered!
The ions are able to carry electric current through a solution. Some liquids such as oil or alcohol do not form ions and do not conduct electricity. Vinegar is mostly water with a small amount of acetic acid in it. The acetic acid separates into ions on so that the solution conducts electricity. BRAINLIST ME PEASE
Answer:
When the volume increases or when the temperature decreases
Explanation:
The ideal gas equation states that:

where
p is the gas pressure
V is the volume
n is the number of moles of gas
R is the gas constant
T is the gas temperature
Assuming that we have a fixed amount of gas, so n is constant, we can rewrite the equation as

which means the following:
- Pressure is inversely proportional to the volume: this means that the pressure decreases when the volume increases
- Pressure is directly proportional to the temperature: this means that the pressure decreases when the temperature decreases
Answer:
V = 0.0806 m/s
Explanation:
given data
mass quarterback = 80 kg
mass football = 0.43 kg
velocity = 15 m/s
solution
we consider here momentum conservation is in horizontal direction.
so that here no initial momentum of the quarterback
so that final momentum of the system will be 0
so we can say
M(quarterback) × V = m(football) × v (football) ........................1
put here value we get
80 × V = 0.43 × 15
V = 0.0806 m/s
Distance fallen = 1/2 ( V initial + V final ) *t
We know
a = -9.8 m/s2
t=120s
To find distance fallen, we need to find V final
Use the equation
V final = V initial + a*t
Substitute known values
V final = 0 + (-9.8)(120)
V final = -1176 m/s
Then plug known values to distance fallen equation
Distance fallen = 1/2 ( 0 + 1176 )(120)
= 1/2(1776)(120)
=106,560 m
This way plugging into distance equation is actually the long way. A faster way is to plug the values into
Distance fallen = V initial * t + 1/2(a*t)
We won't need to find V final using another equation.
But anyways, good luck!