2.71 m/s fast Hans is moving after the collision.
<u>Explanation</u>:
Given that,
Mass of Jeremy is 120 kg (
)
Speed of Jeremy is 3 m/s (
)
Speed of Jeremy after collision is (
) -2.5 m/s
Mass of Hans is 140 kg (
)
Speed of Hans is -2 m/s (
)
Speed of Hans after collision is (
)
Linear momentum is defined as “mass time’s speed of the vehicle”. Linear momentum before the collision of Jeremy and Hans is
= 
Substitute the given values,
= 120 × 3 + 140 × (-2)
= 360 + (-280)
= 80 kg m/s
Linear momentum after the collision of Jeremy and Hans is
= 
= 120 × (-2.5) + 140 × 
= -300 + 140 × 
We know that conservation of liner momentum,
Linear momentum before the collision = Linear momentum after the collision
80 = -300 + 140 × 
80 + 300 = 140 × 
380 = 140 × 
380/140= 
= 2.71 m/s
2.71 m/s fast Hans is moving after the collision.
The force tending to lift the load (vertical force) is equal to <u>22.5N.</u>
Why?
Since the boy is pulling a load (150N) with a string inclined at an angle of 30° to the horizontal, the total force will have two components (horizontal and vertical component), but we need to consider the given information about the tension of the string which is equal to 105N.
We can calculate the vertical force using the following formula:

Hence, we can see that <u>the force tending to lift the load</u> off the ground (vertical force) is equal to <u>22.5N.</u>
Have a nice day!
Mendeleev created a periodic table with 63 initial elements.
He left gaps for unknown elements.
To this date, there are 118 elements in the periodic table.
She misses. She should have accelerated faster in order to get to her target.