Answer
given,
resistance = 0.05 Ω
internal resistance of battery = 0.01 Ω
electromotive force = 12 V
a) ohm's law
V = IR
and volage
now,

inserting the values
I = 200 A
b) Voltage
V = I R
V = 200 x 0.05
V = 10 V
c) Power
P = I V
P = 200 x 10 = 2000 W
d) total resistance = 0.05 + 0.09 = 0.14 Ω
I = 80 A
V = 80 x 0.05 = 4 V
P = 4 x 80 = 320 W
Go and click to the invitation bar and you can find an option written as " search friends " . Then it's easy to find that unknown user if you're pretty fond with his/her username and DP ( display picture ).
Answer:
3.98V
Explanation:
Given
Pontential difference V as 3v
Energy delivered is 30%,
Recall that Enery E=1/2cv^2 from this E=V^2(since Current C is not provided we can assume a value 2)
So E=V^2
E=3^2=9
At full charge E=9,30%of 9,0.3*9=2.7 energy in capacitor is 9-2.7=6.3
But E=V^2
✓E=V
✓6.3=3.98V
Answer:
d = 19.796m
Explanation:
Since the ball is in the air for 4.02 seconds, the ball should reach the maximum point from the ground in half the total time, therefore, t=2.01s to reach maximum height. At the maximum height, the velocity in the y-direction is 0.
So we know t=2.01, vi=0, g=a=9.8m/s and we are solving for d.
Next, you look for a kinematic equation that has these parameters and the one you should choose is:

Now by substituting values in, we get
d = 19.796m
Answer:
stress = 16.9 MPa
Explanation:
The stress in the cable can be calculated as:

Where F is the force and A is the area. So, the area can be calculated as:

Where r is the radius. Since the radius is half the diameter, the radius is 4.0 mm and the area will be equal to:

Then, replacing the force F by 850 N, and A by 50.24 mm², we get that the stress is equal to:

Therefore, the answer is 16.9 MPa