Answer:
Explanation:
For water, the temperature needs to be a little over zero degrees Celsius (0C) for you to melt. If you were salt, sugar, or rock, your melting point is higher than that of water.
- NH₃: Hydrogen bonds;
- CCl₄: London Dispersion Forces; (a.k.a. Induced dipole)
- HCl: Dipole-dipole Interactions.
<h3>Explanation</h3>
Relative strength of intermolecular forces in small molecules:
Hydrogen bonds > Dipole-dipole interactions > London DIspersion Forces.
It takes two conditions for molecules in a substance to form <em>hydrogen bonds</em>.
- They shall contain at least one of the three bonds: H-F, O-H, or N-H.
- They shall contain at least one lone pair of electrons.
NH₃ contains N-H bonds. The central nitrogen atom in an NH₃ molecule has one lone pair of electrons. NH₃ meets both conditions; it is capable of forming hydrogen bonds.
CCl₄ molecules are nonpolar. The molecule has a tetrahedral geometry. Dipole from the polar C-Cl bonds cancel out due to symmetry. The molecule is nonpolar overall. As a result, only London Dispersion Force is possible between CCl₄ molecules.
HCl molecules are polar. The H-Cl bond is fairly polar. The HCl molecule is asymmetric, such that the dipole won't cancel out. The molecule is overall polar. Both dipole-dipole interactions and London Dispersion Force are possible between HCl molecules. However, dipole-dipole interactions are most predominant among the two.
<span>2 C2H6(g) + 5 O2(g) --------> 4 CO(g) + 6 H2O(g)
</span>
Answer:
petroleum,natural gas,lime stone, coal,water,acetylene etc.
Answer:
The anwer is not D the anwer is A
Explanation: