Answer:
18.84 g of silver.
Explanation:
We'll begin by calculating the number atoms present in 5.59 g of sulphur. This can be obtained as follow:
From Avogadro's hypothesis,
1 mole of sulphur contains 6.02×10²³ atoms.
1 mole of sulphur = 32 g
Thus,
32 g of sulphur contains 6.02×10²³ atoms.
Therefore, 5.59 g of sulphur will contain = (5.59 × 6.02×10²³) / 32 = 1.05×10²³ atoms.
From the calculations made above, 5.59 g of sulphur contains 1.05×10²³ atoms.
Finally, we shall determine the mass of silver that contains 1.05×10²³ atoms.
This is illustrated below:
1 mole of silver = 6.02×10²³ atoms.
1 mole of silver = 108 g
108 g of silver contains 6.02×10²³ atoms.
Therefore, Xg of silver will contain 1.05×10²³ atoms i.e
Xg of silver = (108 × 1.05×10²³)/6.02×10²³
Xg of silver = 18.84 g
Thus, 18.84 g of silver contains the same number of atoms (i.e 1.05×10²³ atoms) as 5.59 g of sulfur
Producers are the foundation of every food web in every ecosystem—they occupy what is called the first tropic level of the food web. The second trophic level consists of primary consumers—the herbivores, or animals that eat plants. At the top level are secondary consumers—the carnivores and omnivores who eat the primary consumers. Ultimately, decomposers break down dead organisms, returning vital nutrients to the soil, and restarting the cycle. Another name for producers is autotrophs, which means “self-nourishers.” There are two kinds of autotrophs. The most common are photoautotrophs—producers that carry out photosynthesis. Trees, grasses, and shrubs are the most important terrestrial photoautotrophs. In most aquatic ecosystems, including lakes and oceans, algae are the most important photoautotrophs.
- The student weighs out 0.0422 grams of the metal magnesium, thus we can figure that the more's, the magnesium he used, is the mass of the magnesium over the more mass, which is 0.024422.
- That is approximately 0.001758.
- Furthermore, it claims that too much hydrochloric acid causes the metal magnesium to react, producing hydrogen gas.
- The volume of collected gas is 43.9 cc, the mastic pressure is 22 cc, and a sample of hydrogen gas is collected over water in a meter.
<h3>Is it true that calculations made utilizing experimental and gathered data result in a percent error? </h3>
- Consequently, we are aware that magnesium and chloride react.
- We create 1 as the reaction ratio is 1:2.
- The hydrogen and 1 are more.
- Magnesium chloride is more.
- Therefore, based on this equation, we can infer that the amount of hydrogen that would be created in this scenario is greater than the amount of magnesium present here, or 0.001758 more.
- Among hydrogen, there is.
- \Once we convert the temperature from 32 Celsius to kelvin, we can tell you that the temperature is actually about 5.15 kelvin.
- The gas has a volume of 43 in m, which is equal to 0.0439 liter and indicates that the pressure is approximately 832 millimeter.
- Mercury, which is 2 times 13332 plus ca, or roughly 110922.24 par, is a mathematical constant.
- So, in this instance, we are aware that p v = n r t.
- The r in this case equals p v over n t, thus we want to determine the r.
- So p is 110922.24. The temperature is 305.15 and the V is 0.04 over the n is 0.001758.
- Let's proceed with the calculations right now.
- In this instance, you will discover that the solution is 9.077 times 10; that is all there is to it.
To learn more about Magnesium chloride reactions visit:
brainly.com/question/27891157
#SPJ4
Answer:
= -356KJ
<em>therefore, the reaction where heat is released is exothermic reaction since theΔH is negative</em>
Explanation:
given that enthalpy of gaseous reactants decreases by 162KJ and workdone is -194KJ
then,
change in enthalpy (ΔH) = -162( released energy)
work(w) = -194KJ
change in enthalpy is said to be negative if the heat is evolved during the reaction while heat change(ΔH) is said to be positive if the heat required for the reaction occurs.
At constant pressure the change in enthalpy is given as
ΔH = ΔU + PΔV
ΔU = change in energy
ΔV = change in volume
P = pressure
w = -pΔV
therefore,
ΔH = ΔU -W
to evaluate energy change we have,
ΔU =ΔH + W
ΔU = -162+ (-194KJ)
= -356KJ
<em>therefore, the reaction where heat is released is exothermic reaction since theΔH is negative</em>
The Moon<span> moves </span>around<span> the </span>Earth in<span> an </span>approximately<span> circular </span>orbit<span>, going once </span>around<span> </span>in approximately<span> 27.3 </span><span>days. </span>The moon orbits quite fast: it moves about 0.5 degrees<span> per hour in the sky. So, its average movement in a day is around 13 degrees. 5 days x 13 degrees is approximately 65 degrees. </span>