Explanation:
Reversible reactions that happen in a closed system eventually reach equilibrium. At equilibrium, the concentrations of reactants and products do not change. But the forward and reverse reactions have not stopped - they are still going on, and at the same rate as each other.
It’s 3 because iv done this before
For this reaction to proceed, the following bond breaking should occur:
*one C-H bond
* one Cl-Cl bond
After, the following bond formations should occur:
*one C-Cl bond
*one H-Cl bond
Now, add the bond energies for the respective bond energies which can be found in the attached picture. For bond formations, energy is negative. For bond breaking, energy is positive.
ΔHrxn = (1)(413) + (1)(242) + 1(-328) + 1(-431) =
<em>-104 kJ</em>
Answer: 2.7 grams
Explanation:
According to the law of conservation of mass, mass can neither be created nor be destroyed. Thus the mass of products has to be equal to the mass of reactants. The number of atoms of each element has to be same on reactant and product side. Thus chemical equations are balanced.
Given: mass of sodium hydrogen carbonate = 3.4 g
mass of acetic acid = 10.9 g
Mass of reactants = mass of sodium hydrogen carbonate+ mass of acetic acid = 3.4 + 10.9= 14.3 g
Mass of reactants = Mass of products in reaction vessel + mass of carbon dioxide (as it escapes)
Mass of carbon dioxide = 14.3 - 11.6 =2.7 g
Thus the mass of carbon dioxide released during the reaction is 2.7 grams.