Answer:
There is 30.74% of carbon in dimethylsulfoxide
potassium reacts the most vigorously.
Those are called isotopes,
the answer is 3.
each element has its own unique number of protons (atomic number) but a different number of neutrons can be shown in example number 3.
Rust (Fe2O3. 4H2O) is formed when iron interacts slowly with oxygen and water. Mass of Fe in grams is 2.18 x 10⁴ g.
<h3>
What is the explanation?</h3>
There are 2 moles of Fe atoms in 1 mole of Fe2O3-4H2O. The number of moles of Fe atoms in 45.2 kg rust is shown below.
Moles of Fe = 195.01 mol Fe₂O₃.4H₂O (
)
Moles of Fe = 390.02 mol Fe
Multiply the calculated number of moles of iron, Fe, by its molar mass which is 55.85 
Mass of Fe = 390.02 mol Fe (
)
Mass of Fe = 2.18 x 10⁴ g Fe
Avogadro's number (6.022 x 1023) of molecules (or formula units) make up one mole of a substance (ionic compound). The mass of 1 mole of a chemical is indicated by its molar mass. It provides you with the amount of grams per mole of a substance, to put it another way.
To learn more about moles visit:
brainly.com/question/26416088
#SPJ4
Answer:
C) SN2 and E2
Explanation:
For this question, we have analyzed the <u>substrate</u> and the <u>base/nucleophile</u>. The substrate, in this case, is 1-iodohexane and the base/nucleophile is potassium tert-butoxide.
<u>Substrate</u>
<u />
In the 1-iodohexane the iodide "I" is bonded to a primary carbon (carbon 1). Therefore we will have a <u>primary substrate</u>. If we have a primary substrate an Sn1 can not take place. We can not have a <u>primary carbocation</u> due to this instability. So, we can disccard options A) and B).
<u>Base/nucleophile</u>
<u />
In the potassium tert-butoxide we have an ionic compound. A positive charge is placed in the potassium atom a negative charge is placed in the oxygen of the ter-butoxide ion. So, we will have a <u>strong base</u> (a molecule with the ability to remove electrons) and a <u>strong nucleophile</u> (a molecule with ability to bond with an electrophile). With all this in mind, w<u>e can not have an E1 reaction</u>.
With both analyses, the answer is C).
See figure 1
I hope it helps!