Answer:
proton :
a particale or atom containing a postive charge
nuutron
a particale or atom that contains a negative charge
electron :
a particale or atom with a negative chrage.
Explanation:
proton:
a stable subatomic particle occurring in all atomic nuclei, with a positive electric charge equal in magnitude to that of an electron, but of opposite sign.
nuetron:
a subatomic particle of about the same mass as a proton but without an electric charge, present in all atomic nuclei except those of ordinary hydrogen.
elcetron:
a stable subatomic particle with a charge of negative electricity, found in all atoms and acting as the primary carrier of electricity in solids.
No He believed tiny particles were invisible and couldn't be changed....So No The person that believed in this was Dalton .
<em>Answer :</em> 72.05 g/mol
<span>
<em>Explanation : </em>
Let's </span>assume that the given gas is an ideal gas. Then we can use ideal gas equation,<span>
PV = nRT<span>
</span>
Where,
P = Pressure of the gas (Pa)
V = volume of the gas (m³)
n = number of moles (mol)
R = Universal gas constant (8.314 J mol</span>⁻¹ K⁻¹)<span>
T = temperature in Kelvin (K)
<span>
The given data for the gas </span></span>is,<span>
P = 777 torr = 103591 Pa
V = </span>125 mL = 125 x 10⁻⁶ m³<span>
T = (</span>126 + 273<span>) = 399 K
R = 8.314 J mol</span>⁻¹ K⁻¹<span>
n = ?
By applying the formula,
103591 Pa x </span>125 x 10⁻⁶ m³ = n x 8.314 J mol⁻¹ K⁻¹ x 399 K<span>
n = 3.90 x 10</span>⁻³<span> mol
</span>Moles (mol) = mass (g) /
molar mass (g/mol)<span>
Mass of the gas = </span><span>0.281 g
</span>Moles of the gas = 3.90 x 10⁻³ mol
<span>Hence,
molar mass of the gas = mass / moles
= 0.281 g / </span>3.90 x 10⁻³ mol
<span> = 72.05 g/mol
</span>
Water would have a much lower boiling point much like its other hydrides and it would loss its ability to dissolve polar substances plus it couldn't form water columns so no more cohesion between water molecules