First thing, you convert from kPa to Pa. Then, you find the atm value of the Pa you got.
155 kPa = 155 000 Pa
1 atm = 101 325 Pa
x atm = 155 000 Pa
You divide 101 325 over 155 000 and you get about 1.53
So, 155 000 Pa = 1.53 atm.
So, T (temperature) = 25 + 273 = 298
605 kPa = 605 000 Pa
1 atm = 101 325 Pa
x atm = 605 000 Pa
You divide 605 000 over 101 325 and you get about 5.97
So 605 000 Pa = 5.97 atm
So, T = 125 + 273 = 398
P1 * V1/T1 = P2 * V2/T2
1.53 * 1/298 = 5.97 * V2/398
You calculate ad you get V2 = 0.342 L
Hope this Helps :)
Answer:
Lightbublb: electric to radiant
2nd image (can't tell what it is): chemical to electrical
windmill: motion to electric
fan: electric to motion
guitar: electric to sound.
If a chemical reaction catalyzed by an enzyme is being carried out, and there is a sudden, drastic decrease in temperature, the thing that will most likely to happen next is going to be the :
“enzyme activity will decrease, and the reaction will proceed very slowly, or possibly not at all.“
Explanation:
This compliance is required to how enzymes bind to other molecules and cause chemical reactions to occur on those molecules. Lowering the temperature reduces the motion of molecules and atoms, expecting this compliance is reduced or lost. As the temperature decreases, so do enzyme activity. While higher temperatures do increase the activity of enzymes and the rate of reactions,
all cells come from pre existing cells
Answer is D
Explanation: A gamma ray primarily consists of pure energy and no mass.