Both the sat water ice cubes would freeze due to the temperature of the freezer.
Answer:
3–ethyl–4–methylhexane.
Explanation:
To name the above compound, do the following:
1. Determine the functional group of the compound.
2. Locate the longest continuous carbon chain. This gives the parent name of the compound.
3. Identify the substituent group attached to the compound.
4. Give the substituent the lowest possible count.
5. Combine the above to name the compound.
Now, we shall name the compound given in the question above as follow:
1. The compound contains only single bond. Therefore, the compound belong to the alkane family.
2. The longest continuous carbon chain is 6 i.e hexane.
3. The substituent group attached are:
i. Methyl, CH3.
ii. Ethyl, CH2CH3.
4. we shall name the substituents alphabetically i.e ethly will come before methyl. Therefore,
Ethyl is located at carbon 3.
Methy is located at carbon 4.
5. Therefore, the name of the compound is:
3–ethyl–4–methylhexane.
To calculate the new pressure, we can use Boyle’s law to relate these two scenarios (Boyle’s law is used because the temperature is assumed to remain constant). Boyle’s law is:
P1V1 = P2V2,
Where “P” is pressure and “V” is volume. The pressure and volume of the first scenario is 215 torr and 51 mL, respectively, and the second scenario has a volume of 18.5 L (18,500 mL) and the unknown pressure - let’s call that “x”. Plugging these into the equation:
(215 torr)(51 mL) =(“x” torr)(18,500 mL)
x = 0.593 torr
The final pressure exerted by the gas would be 0.593 torr.
Hope this helps!
Answer:
v = 37.9 ml
Explanation:
Given data:
Mass of compound = 1.56 kg
Density = 41.2 g/ml
Volume of compound = ?
Solution:
First of all we will convert the mass into g.
1.56 ×1000 = 1560 g
Formula:
D=m/v
D= density
m=mass
V=volume
v = m/d
v = 1560 g / 41.2 g/ml
v = 37.9 ml
A chemical or physical change