Answer:
(a) ![Pr = 0.3024](https://tex.z-dn.net/?f=Pr%20%3D%200.3024)
(b) ![Pr = 0.6976](https://tex.z-dn.net/?f=Pr%20%3D%200.6976)
(c) ![Pr = \frac{^9P_{n-1}}{10^{n-1}}](https://tex.z-dn.net/?f=Pr%20%3D%20%5Cfrac%7B%5E9P_%7Bn-1%7D%7D%7B10%5E%7Bn-1%7D%7D)
Step-by-step explanation:
Given
i.e. between 4 and 9
![n(Start) =4](https://tex.z-dn.net/?f=n%28Start%29%20%3D4)
![Digits = 5](https://tex.z-dn.net/?f=Digits%20%3D%205)
Solving (a): Probability that each of the 5 digit are different
Since there is no restriction;
The total possible selection is as follows:
(i.e. any of the 4 start digits)
(i.e. any of the 10 digits 0 - 9)
(i.e. any of the 10 digits 0 - 9)
(i.e. any of the 10 digits 0 - 9)
(i.e. any of the 10 digits 0 - 9)
So, the total is:
![Total = 4 * 10 * 10 * 10 * 10](https://tex.z-dn.net/?f=Total%20%3D%204%20%2A%2010%20%2A%2010%20%2A%2010%20%2A%2010)
![Total = 40000](https://tex.z-dn.net/?f=Total%20%3D%2040000)
For selection that all digits are different, the selection is:
(i.e. any of the 4 start digits)
(i.e. any of the remaining 9)
(i.e. any of the remaining 8)
(i.e. any of the remaining 7)
(i.e. any of the remaining 6)
So:
![Selection =4 * 9 * 8 * 7 * 6](https://tex.z-dn.net/?f=Selection%20%3D4%20%2A%209%20%2A%208%20%2A%207%20%2A%206)
![Selection =12096](https://tex.z-dn.net/?f=Selection%20%3D12096)
So, the probability is:
![Pr = \frac{Selection}{Total}](https://tex.z-dn.net/?f=Pr%20%3D%20%5Cfrac%7BSelection%7D%7BTotal%7D)
![Pr = \frac{12096}{40000}](https://tex.z-dn.net/?f=Pr%20%3D%20%5Cfrac%7B12096%7D%7B40000%7D)
![Pr = 0.3024](https://tex.z-dn.net/?f=Pr%20%3D%200.3024)
Solving (b): At least 1 repeated digit
The probability calculated in (a) is the all digits are different i.e. P(None)
So, using laws of complement
We have:
![P(At\ least\ 1) = 1 - P(None)](https://tex.z-dn.net/?f=P%28At%5C%20least%5C%201%29%20%3D%201%20-%20P%28None%29)
So, we have:
![Pr= 1 - 0.3024](https://tex.z-dn.net/?f=Pr%3D%201%20-%200.3024)
![Pr = 0.6976](https://tex.z-dn.net/?f=Pr%20%3D%200.6976)
Solving (c): An expression to model the probability.
<em>Using (a) as a point of reference, we have;</em>
![Pr = \frac{Selection}{Total}](https://tex.z-dn.net/?f=Pr%20%3D%20%5Cfrac%7BSelection%7D%7BTotal%7D)
Where
---- for selection of 5 i.e. n = 5
![Total = 4 * 10 * 10 * 10 * 10](https://tex.z-dn.net/?f=Total%20%3D%204%20%2A%2010%20%2A%2010%20%2A%2010%20%2A%2010)
![Selection =4 * 9 * 8 * 7 * 6](https://tex.z-dn.net/?f=Selection%20%3D4%20%2A%209%20%2A%208%20%2A%207%20%2A%206)
This can be rewritten as:
![Selection = 4 * ^9P_4](https://tex.z-dn.net/?f=Selection%20%3D%204%20%2A%20%5E9P_4)
4 can be expressed as: 5 - 1
So, we have:
![Selection = (5-1) *^9P_{5-1}](https://tex.z-dn.net/?f=Selection%20%3D%20%285-1%29%20%2A%5E9P_%7B5-1%7D)
Substitute n for 5
![Selection = (n-1) *^9P_{n-1}](https://tex.z-dn.net/?f=Selection%20%3D%20%28n-1%29%20%2A%5E9P_%7Bn-1%7D)
![Selection = (n-1)^9P_{n-1}](https://tex.z-dn.net/?f=Selection%20%3D%20%28n-1%29%5E9P_%7Bn-1%7D)
![Total = 4 * 10 * 10 * 10 * 10](https://tex.z-dn.net/?f=Total%20%3D%204%20%2A%2010%20%2A%2010%20%2A%2010%20%2A%2010)
This can be rewritten as:
![Total = 4 * 10^4](https://tex.z-dn.net/?f=Total%20%3D%204%20%2A%2010%5E4)
![Total = (5-1) * 10^{5-1}](https://tex.z-dn.net/?f=Total%20%3D%20%285-1%29%20%2A%2010%5E%7B5-1%7D)
![Total = (n-1) * 10^{n-1}](https://tex.z-dn.net/?f=Total%20%3D%20%28n-1%29%20%2A%2010%5E%7Bn-1%7D)
![Total = (n-1) 10^{n-1}](https://tex.z-dn.net/?f=Total%20%3D%20%28n-1%29%2010%5E%7Bn-1%7D)
So, the expression is:
![Pr = \frac{(n-1)^9P_{n-1}}{(n-1)10^{n-1}}](https://tex.z-dn.net/?f=Pr%20%3D%20%5Cfrac%7B%28n-1%29%5E9P_%7Bn-1%7D%7D%7B%28n-1%2910%5E%7Bn-1%7D%7D)
![Pr = \frac{^9P_{n-1}}{10^{n-1}}](https://tex.z-dn.net/?f=Pr%20%3D%20%5Cfrac%7B%5E9P_%7Bn-1%7D%7D%7B10%5E%7Bn-1%7D%7D)
<em>Where n represents the digit number</em>