Answer:
Multiple answers
Step-by-step explanation:
The original urns have:
- Urn 1 = 2 red + 4 white = 6 chips
- Urn 2 = 3 red + 1 white = 4 chips
We take one chip from the first urn, so we have:
The probability of take a red one is :
(2 red from 6 chips(2/6=1/2))
For a white one is:
(4 white from 6 chips(4/6=(2/3))
Then we put this chip into the second urn:
We have two possible cases:
- First if the chip we got from the first urn was white. The urn 2 now has 3 red + 2 whites = 5 chips
- Second if the chip we got from the first urn was red. The urn two now has 4 red + 1 white = 5 chips
If we select a chip from the urn two:
- In the first case the probability of taking a white one is of:
= 40% ( 2 whites of 5 chips) - In the second case the probability of taking a white one is of:
= 20% ( 1 whites of 5 chips)
This problem is a dependent event because the final result depends of the first chip we got from the urn 1.
For the fist case we multiply :
x
=
= 26.66% (
the probability of taking a white chip from the urn 1,
the probability of taking a white chip from urn two)
For the second case we multiply:
x
=
= .06% (
the probability of taking a red chip from the urn 1,
the probability of taking a white chip from the urn two)
By Euler's method the <em>numerical approximate</em> solution of the <em>definite</em> integral is 4.189 648.
<h3>How to estimate a definite integral by numerical methods</h3>
In this problem we must make use of Euler's method to estimate the upper bound of a <em>definite</em> integral. Euler's method is a <em>multi-step</em> method, related to Runge-Kutta methods, used to estimate <em>integral</em> values numerically. By integral theorems of calculus we know that definite integrals are defined as follows:
∫ f(x) dx = F(b) - F(a) (1)
The steps of Euler's method are summarized below:
- Define the function seen in the statement by the label f(x₀, y₀).
- Determine the different variables by the following formulas:
xₙ₊₁ = xₙ + (n + 1) · Δx (2)
yₙ₊₁ = yₙ + Δx · f(xₙ, yₙ) (3) - Find the integral.
The table for x, f(xₙ, yₙ) and y is shown in the image attached below. By direct subtraction we find that the <em>numerical</em> approximation of the <em>definite</em> integral is:
y(4) ≈ 4.189 648 - 0
y(4) ≈ 4.189 648
By Euler's method the <em>numerical approximate</em> solution of the <em>definite</em> integral is 4.189 648.
To learn more on Euler's method: brainly.com/question/16807646
#SPJ1
Answer:
Well, the only thing you should do is to use the formula.
if the bases are: a, b
and the height is=h
Then, this is your formula, S=½(a+b)×h
Step-by-step explanation:
Aight,
100dm=10m
S=10m
now, the formula
10=½(2.1+1.9)×h===> 20=4h==> h=5m
Answer:
$15
Step-by-step explanation:
Since there are 10 cards and a total possible prize of 30 dollars, the probability for each one is 30/10=3 dollars. And since 5 out of the 10 are even, you can multiply the individual amount by 5 to get a total estimated payout of $15. Hope this helps!
Answer:
A.
Step-by-step explanation:
Step 1: Write equation
x² - 8x = 3
Step 2: Solve for <em>x</em>
- Complete the Square: x² - 8x + 16 = 3 + 16
- Factor: (x - 4)² = 19
- Square root both sides: x - 4 = ±√19
- Add 4 to both sides: x = 4 ± √19