Answer:
The answer to your question is : vf = 15.18 m/s
Explanation:
Data
vo = 24 m/s
d = 120 m
vf = ? when d = 60.0 m
Formula
vf² = vo² + 2ad
For d =100m
a = (vf² - vo²) / 2d
a = (0 -24²) / 2(100)
a = -576/200
a = 2.88 m/s²
Now, when d = 60
vf² = (24)² - 2(2.88)(60)
vf² = 576 - 345.6
vf² = 230.4
vf = 15.18 m/s
Your question kind of petered out there towards the end and you didn't specify
the terms, so I'll pick my own.
The "Hubble Constant" hasn't yet been pinned down precisely, so let's pick a
round number that's in the neighborhood of the last 20 years of measurements:
<em>70 km per second per megaparsec</em>.
We'll also need to know that 1 parsec = about 3.262 light years.
So the speed of your receding galaxy is
(Distance in LY) x (1 megaparsec / 3,262,000 LY) x (70 km/sec-mpsc) =
(150 million) x (1 / 3,262,000) x (70 km/sec) =
<em>3,219 km/sec </em>in the direction away from us (rounded)
Answer: 10Nm or 10J
Explanation:
Given the following :
Force (f) = 5
Distance (d) = 2m
Calculate the kinetic energy assuming no friction
Work done = force × distance
Work done = 5N × 2m = 10Nm
Recall :
Work done = ΔK.E ( change in kinetic energy)
Therefore, kinetic energy of the book after sliding = ΔK. E, which is equal to work done.
Hence, K. E of book after sliding is 10Nm
Answer:
Explanation:
1. Mechanical waves require material medium for their propagation while electromagnetic waves do not require material medium for their propagation.
2. Mechanical waves can either be transverse or longitudinal while electromagnetic waves are transverse.(Transverse waves are waves in which the vibration of the particules of the medium is perpendicular to the direction of the motion of wave. E.g water waves, waves of a plucked string and all electromagnetic waves RIVUXG . Longitudinal waves are waves whose vibration are parallel to the direction of the motion of the medium e.g waves in strings, sound waves.e.t.c)
<h2>
Answer: Invariance of the speed of light in vacuum </h2>
Special relativity was proposed on 1905 by Einstein, who developed his theory based on the following two postulates:
<em>1. The laws of physics are the same in all inertial systems. There is no preferential system. </em>
<em>2. The speed of light in vacuum has the same value for all inertial systems. </em>
<em></em>
Focusing on the first postulate, it can be affirmed that any measurement on a body is made with reference to the system in which it is being measured.
In addition, it deals with the <u>dilation of time</u> stating that <u>time passes at different rates in regions of different gravitational potential</u>. That is, the greater the local distortion of space-time due to gravity, the slower the time passes.
On the other hand, following what relativity establishes, bodies within a gravitational field follow a curved space path.