I believe the correct answer from the choices listed above is option D. The proportion of carbon-14 in an organism is useful in figuring out the age of that organism after it dies because <span>the proportion of carbon-14 slowly decreases after the death of the organism. Hope this answers the question.</span>
If the current takes him downstream we must find the resultant vector of the velocities:
Then if the river is 3000 m-wide the swimmer will have to pass:
1.3520747 · 300 = 4056.14 m t = 4056.14 m : 1 m/s
a ) It takes
4056.15 seconds ( 1 hour 7 minutes and 36 seconds ) to cross the river.
b ) 0.91 · 3000 =
2730 mHe will be 2730 m downstream.
Work = force * distance.
We must produce twice as much energy as we are lifting the weight twice as high.
But we are not increasing the force so we must increase the length of the ramp ( distance ) instead.
The new length will be twice as great as the previous length.
So 8 metres is required.
25 kg * 8 m = work = 100 kg * 2 m
Answer:
a) Linear equation
Explanation:
Definition of acceleration
if a=constant and we integrate the last equation
So the relation between the time and the velocity is linear. If we plot the velocity in function of time, the plot is a line, and the acceleration is the slope of this line.
Q: ken, 0.75 kg, moves toward a wall (his path normal to the wall) at 52 m/s. 13.0 ms after he touches the wall he pushes himself off in the opposite direction at 60 m/s. What is the magnitude of the average force the wall exerts on Ken during this rapid maneuver
Answer:
-6461.54 N
Explanation:
From Newton's Fundamental equation,
F = m(v-u)/t.................... Equation 1
Where F = Force exerted in sonic, m = mass of ken, v = final velocity, u = initial velocity, t = time.
Given: m = 0.75 kg, v = - 60 m/s (opposite direction), u = 52 m/s, t = 13 ms = 0.013 s
Substitute into equation 1
F = 0.75(-60-52)/0.013
F = 0.75(-112)/0.013
F = -84/0.013
F = -6461.54 N
Note: The negative sign tells that the force act in opposite direction to the initial motion of ken.
Hence the magnitude of the average force of the wall = -6461.54 N