Answer:
A) g = 9.751 m/s², B) h = 2.573 10⁴ m
Explanation:
The angular velocity of a pendulum is
w = √ g / L
Angular velocity and frequency are related.
w = 2π f
f = 1 / 2π √ g / L
A) with the initial data we can look for the pendulum length
L = 1 /4π² g / f²
L = 1 /4π² 9,800 / 0.3204²
L = 2.4181 m
The length of the pendulum does not change, let's look for the value of g for the new location
g = 4π² f² L
g = 4π² 0.3196² 2.4181
g = 9.75096 m / s²
g = 9.751 m/s²
B) The value of the acceleration of gravity can be found with the law of universal gravitation
F = G m M /
²
And Newton's second law
W = m g
W = F
G m M /
² = mg
g = G M /
²
² = G M / g
Let's calculate
² = 6.67 10⁻¹¹ 5.98 10²⁴ /9.75096
R = √ 4.0905 10¹³ = √ 40.9053 10¹²
R = 6.395726 10⁶ m
The height above sea level is
h = R - [tex]R_{e}[/tex
h = (6.395726 -6.37) 10⁶
h = 0.0257256 106
h = 2.573 10⁴ m
This would be an illustration of Newton's first law of motion. Law of inertia, an object moving at constant velocity will keep moving at constant velocity until a force is acted upon it. Inertia is the tendency of an object to keep moving in a particular direction resisting to change, unless a force acts upon the object.
Answer:
Sam will do 1152 J of work to stop the boat
Explanation:
Work: This is defined as the product of force and distance, the S.I unit of work is Joules. At any point in science, during calculation Energy and worked can be interchange because they have the same unit.
E = W = 1/2mv²................ Equation 1
Where E = energy, W = work, m = mass, v = velocity.
Given: m = 900 kg, v = 1.6 m/s
Substituting these values into equation 1
W = 1/2(900)(1.6)²
W = 450×2.56
W = 1152 J.
Therefore Sam will do 1152 J of work to stop the boat