Yessssssssssssssssssssssss
Answer:
a) 0.64 b) 2.17m/s^2 c) 8.668joules
Explanation:
The block was on the ramp, the ramp was inclined at 20degree. A force of 5N was acting horizontal to the but not parallel to the ramp,
Frictional force = horizontal component of the weight of the block along the ramp + the applied force since the block was just about move
Frictional force = mgsin20o + 5N = 6.71+5N = 11.71
The force of normal = the vertical component of the weight of the block =mgcos20o = 18.44
Coefficient of static friction = 11.71/18.44= 0.64
Remember that g = acceleration due to gravity (9.81m/s^2) and m = mass (2kg)
b) coefficient of kinetic friction = frictional force/ normal force
Fr = 0.4* mgcos 20o = 7.375N
F due to motion = ma = total force - frictional force
Ma = 11.71 - 7.375 = 4.335
a= 4.335/2(mass of the block) = 2.17m/s^2
C) work done = net force *distance = 4.335*2= 8.67Joules
Answer:
2.22m/s
Explanation:
Given parameters:
M1 = 60kg
M2 = 75kg
V1 = 0m/s
V2 = 4m/s
Unknown;
Velocity after collision = ?
Solution:
To solve this problem, we must understand that the momentum before and after collision of the bodies must be the same;
M1 V1 + M2 V2 = v(M1 + M2)
So;
60 x 0 + 75 x 4 = v (60 +75)
300 = 135v
v = 2.22m/s