Answer:
a) their potential energy increases.
Explanation:
Ohm's Law is
R= V/I
Where R= Resistance
V= potential difference or potential energy
I= current or conduction electron flow rate
Clearly R and V are directly proportional i-e Potential energy increases with resistance.
Based on the calculations, the angle through which the tire rotates is equal to 4.26 radians and 244.0 degrees.
<h3>How to calculate the angle?</h3>
In Physics, the distance covered by an object in circular motion can be calculated by using this formula:
S = rθ
<u>Where:</u>
- r is the radius of a circular path.
- θ is the angle measured in radians.
Substituting the given parameters into the formula, we have;
1.87 = 0.44 × θ
θ = 1.87/0.44
θ = 4.26 radians.
Next, we would convert this value in radians to degrees:
θ = 4.26 × 180/π
θ = 4.26 × 180/3.142
θ = 244.0 degrees.
Read more on radians here: brainly.com/question/19758686
#SPJ1
Answer:
Explanation:
Given

Frictional Force is balanced by force due to car acceleration
Frictional force 




Answer:
body position 4 is (-1,133, -1.83)
Explanation:
The concept of center of gravity is of great importance since in this all external forces are considered applied, it is defined by
x_cm = 1 /M ∑
m_{i}
y_cm = 1 /M ∑ y_{i} mi
Where M is the total mass of the body, mi is the mass of each element
give us the mass and position of this masses
body 1
m1 = 2.00 ka
x1 = 0 me
y1 = 0 me
body 2
m2 = 2.20 kg
x2 = 0m
y2 = 5 m
body 3
m3 = 3.4 kg
x3 = 2.00 m
y3 = 0
body 4
m4 = 6 kg
x4=?
y4=?
mass center position
x_cm = 0
y_cm = 0
let's apply to the equations of the initial part
X axis
M = 2.00 + 2.20 + 3.40
M = 7.6 kg
0 = 1 / 7.6 (2 0 + 2.2 0 + 3.4 2 + 6 x4)
x4 = -6.8 / 6
x4 = -1,133 m
Axis y
0 = 1 / 7.6 (2 0 + 2.20 5 +3.4 0 + 6 y4)
y4 = -11/6
y4 = -1.83 m
body position 4 is (-1,133, -1.83)