Answer is B. Longitudinal Wave
Answer:
0.5 s
Explanation:
From the question given above, the following data were obtained:
Number of circle (n) = 2
Time (t) = 1 s
Period =?
Period of a wave is simply defined as the time taken to make one complete oscillation. Mathematically, it can be expressed as:
T = t / n
Whereb
T => is the period
t => is the space time
n => is the number of circle or oscillation.
With the above formula, we can obtain the period of the wave as follow:
Number of circle (n) = 2
Time (t) = 1 s
Period =?
T = t / n
T = 1 / 2
T = 0.5 s
Thus, the period of the wave is 0.5 s
Explanation:
There are two components of a longitudinal sound wave which are compression and rarefaction. Similarly, there are two components of the transverse wave, the crest, and trough.
The crest of a wave is defined as the part that has a maximum value of displacement while the trough is defined as the part which corresponds to minimum displacement.
While compression is that space where the particles are close together while the rarefaction is that space where the particles are far apart from each other.
So, the refraction or the rarefied part of a longitudinal sound wave is analogous to a trough of a transverse wave.
Answer:
The water level rises more when the cube is located above the raft before submerging.
Explanation:
These kinds of problems are based on the principle of Archimedes, who says that by immersing a body in a volume of water, the initial water level will be increased, raising the water level. That is, the height in the container with water will rise in level. The difference between the new volume and the initial volume of the water will be the volume of the submerged body.
Now we have two moments when the steel cube is held by the raft and when it is at the bottom of the pool.
When the cube is at the bottom of the water we know that the volume will increase, and we can calculate this volume using the volume of the cube.
Vc = 0.45*0.45*0.45 = 0.0911 [m^3]
Now when a body floats it is because a balance is established in the densities, the density of the body and the density of the water.
![Ro_{H2O}=R_{c+r}\\where:\\Ro_{H2O}= water density = 1000 [kg/m^3]\\Ro_{c+r}= combined density cube + raft [kg/m^3]](https://tex.z-dn.net/?f=Ro_%7BH2O%7D%3DR_%7Bc%2Br%7D%5C%5Cwhere%3A%5C%5CRo_%7BH2O%7D%3D%20water%20density%20%3D%201000%20%5Bkg%2Fm%5E3%5D%5C%5CRo_%7Bc%2Br%7D%3D%20combined%20density%20cube%20%2B%20raft%20%5Bkg%2Fm%5E3%5D)
Density is given by:
Ro = m/V
where:
m= mass [kg]
V = volume [m^3]
The buoyancy force can be calculated using the following equation:
![F_{B}=W=Ro_{H20}*g*Vs\\W = (200+730)*9.81\\W=9123.3[N]\\\\9123=1000*9.81*Vs\\Vs = 0.93 [m^3]](https://tex.z-dn.net/?f=F_%7BB%7D%3DW%3DRo_%7BH20%7D%2Ag%2AVs%5C%5CW%20%3D%20%28200%2B730%29%2A9.81%5C%5CW%3D9123.3%5BN%5D%5C%5C%5C%5C9123%3D1000%2A9.81%2AVs%5C%5CVs%20%3D%200.93%20%5Bm%5E3%5D)
Vs > Vc, What it means is that the combined volume of the raft and the cube is greater than that of the cube at the bottom of the pool. Therefore the water level rises more when the cube is located above the raft before submerging.