Answer:
Answer to the question:
Explanation:
A black hole is a finite region of space within which there is a mass concentration high and dense enough to generate a gravitational field such that no material particle, not even light, can escape it.
As density = mass/volume
So
Mass = density *volume
Mass = 25,365.4 * 2.7 = 68,486.58 g
<span>Mass of the granite monument to the nearest tenth
= 68,485.6 g</span>
Huhhhh this is confusing ummm hello I guess
Answer:
271.095 m
Explanation:
✓ Let speed of sound in air that was given as (343 m/s) be represented as (Vi)
✓( speed of sound in concrete that was given as (3000 m/s ) be debited as (Vc)
✓ Let the distance travelled by the sound = s
✓duration of Time that exist between heard of sounds = 0.70s
But we know that
Time = (Distance / Speed)
✓Time it takes the sound to travel through air= s/vi = s/343
✓Time it takes the sound to travel through concrete= s/vc = s/3000
✓ (s/343) - (s/3000) = 0.70
Finding LCM and simplify
[(3000s - 343s)]/1029000 = 0.70
2657s /1029000 = 0.70
Making " s" subject of the formula
s= (1029000 × 0.70)/2657
s=720300/ 2657
s= 271.095 m
Hence, The impact took place at a distance of 271.095 m away from the person.
Answer:
a. 78 degree
Explanation:
According to Snell's Law, we have:
(ni)(Sin θi) = (nr)(Sin θr)
where,
ni = Refractive index of medium on which light is incident
ni = Refractive index of ethyl alcohol = 1.361
nr = Refractive index of medium from which light is refracted
nr = Refractive index of ethyl alcohol = 1.333
θi = Angle of Incidence
θr = Angle of refraction
So, the Angle of Incidence is know as the Critical Angle (θc), when the refracted angle becomes 90°. This is the case of total internal reflection. That is:
θi = θc
when, θr = 90°
Therefore, Snell's Law becomes:
(1.361)(Sin θc) = (1.333)(Sin 90°)
Sin θc = 1.333/1.361
θc = Sin⁻¹ (0.9794)
θc = 78.35° = 78° (Approximately)
Therefore, correct answer will be:
a. <u>78 degree</u>