Answer:
Depends.
Explanation:
Whether the object is going left or right, the speed will stay the same until friction eventually stops it. <em>However, </em>if, for example, we're talking about an object going straight before veering right, then yes, speed <em>does</em> matter. An object will normally have to speed up or slow down momentarily when changing direction to keep itself sustained on the ground.
So, honestly? It really depends on what we're talking about!
Hope this helped!
Source(s) used: None.
Answer:
<em>Height = 5.65 km</em>
Explanation:
is the circumference or we can say measures the boundary of hemisphere of friction-less ice that he is sitting on.
So, the height will be = 2 x 3.14 x (30)^2 = 5654.7 m = 5.65 km
Answer:
The distance of stars and the earth can be averagely measured by using the knowledge of geometry to estimate the stellar parallax angle(p).
From the equation below, the stars distances can be calculated.
D = 1/p
Distance = 1/(parallax angle)
Stellar parallax can be used to determine the distance of stars from an observer, on the surface of the earth due to the motion of the observer. It is the relative or apparent angular displacement of the star, due to the displacement of the observer.
Explanation:
Parallax is the observed apparent change in the position of an object resulting from a change in the position of the observer. Specifically, in the case of astronomy it refers to the apparent displacement of a nearby star as seen from an observer on Earth.
The parallax of an object can be used to approximate the distance to an object using the formula:
D = 1/p
Where p is the parallax angle observed using geometry and D is the actual distance measured in parsecs. A parsec is defined as the distance at which an object has a parallax of 1 arcsecond. This distance is approximately 3.26 light years
Answer:
The puck moves a vertical height of 2.6 cm before stopping
Explanation:
As the puck is accelerated by the spring, the kinetic energy of the puck equals the elastic potential energy of the spring.
So, 1/2mv² = 1/2kx² where m = mass of puck = 39.2 g = 0.0392 g, v = velocity of puck, k = spring constant = 59 N/m and x = compression of spring = 1.3 cm = 0.013 cm.
Now, since the puck has an initial velocity, v before it slides up the inclined surface, its loss in kinetic energy equals its gain in potential energy before it stops. So
1/2mv² = mgh where h = vertical height puck moves and g = acceleration due to gravity = 9.8 m/s².
Substituting the kinetic energy of the puck for the potential energy of the spring, we have
1/2kx² = mgh
h = kx²/2mg
= 59 N/m × (0.013 m)²/(0.0392 kg × 9.8 m/s²)
= 0.009971 Nm/0.38416 N
= 0.0259 m
= 2.59 cm
≅ 2.6 cm
So the puck moves a vertical height of 2.6 cm before stopping
Answer:
I will say that the the potential energy will be at its maximum.
Explanation:
potential energy deals with gravity and gravity deals with height, so when a object is in its maximum height it will have the maximum potential energy.