Answer:
Its duration is 1.85*10⁻³ s or 1.85 ms
Explanation:
The intensity of electric current I is defined as the amount of electric charge Q (measured in Coulombs) that passes through a section of a conductor in each unit of time. The letter I is used to name the Intensity and its unit is the Ampere (A).
The intensity of electric current is expressed as:

where:
I: Intensity expressed in Amps (A)
Q: Electric charge expressed in Coulombs (C)
t: Time expressed in seconds (s)
Being:
Replacing:

Solving:
19500 A*t= 36 C

t= 1.85*10⁻³ s= 1.85 ms (being 1 s= 1,000 ms)
<u><em>Its duration is 1.85*10⁻³ s or 1.85 ms</em></u>
Machines makes work easier by increasing the amount of force that is applied, and changing the direction in which the force is applied !! Hope it helped (p.s. I had this same question)
Answer:
add 44m/s and 22m/s then multiply it by 11
Explanation:
If the solution is treated as an ideal solution, the extent of freezing
point depression depends only on the solute concentration that can be
estimated by a simple linear relationship with the cryoscopic constant:
ΔTF = KF · m · i
ΔTF, the freezing point depression, is defined as TF (pure solvent) - TF
(solution).
KF, the cryoscopic constant, which is dependent on the properties of the
solvent, not the solute. Note: When conducting experiments, a higher KF
value makes it easier to observe larger drops in the freezing point.
For water, KF = 1.853 K·kg/mol.[1]
m is the molality (mol solute per kg of solvent)
i is the van 't Hoff factor (number of solute particles per mol, e.g. i =
2 for NaCl).