The ball's horizontal and vertical velocities at time
are


but the ball is thrown horizontally, so
. Its horizontal and vertical positions at time
are


The ball travels 22 m horizontally from where it was thrown, so

from which we find the time it takes for the ball to land on the ground is

When it lands,
and


It's the Doppler Effect that "up and down sound."
I was on Yahoo--- Brainly doesn't have an option for Credientials or Site credit, so I'll just put this in the quotes:
<span>The formula for doppler effect is always (s is speed and f is frequency): </span>
<span>f_perceived.by.observer = f_of.emitted.wave * (s_wave + s_observer) / (s_wave + s_source.of.wave) </span>
<span>And you should pay attention to the signs: </span>
<span>s_observer is positive if the receiver is moving towards the source, negative otherwise </span>
<span>s_source.of.wave is positive if the source is moving away from the observer, negative otherwise </span>
<span>Applying it to this case: </span>
<span>s_source.of.wave = ? (positive), speed of ambulance </span>
<span>s_observer = + 2.44 m/s speed cyclist </span>
<span>f_of.emitted.wave =1800 Hz frequency of whine </span>
<span>f_perceived.by.observer = 1760 frequency heard by cyclist </span>
<span>s_wave = 343 m/s speed of sound in air </span>
<span>Now you know every value in the equation for doppler effect except by s_source.of.wave, so you can solve for s_source.of.wave.</span>
The relationship is directly proportional; as temperature increases, volume increases in the same way.
Charles's law states that at a constant pressure, the volume of fixed a mass of a gas is directly proportional to its absolute temperature or kelvin temperature.
Mathematically, this law can be written as follows;

This law explains the direct relationship between Volume of the gas and its Kelvin temperature. That is, as Temperature increases, the volume of the gas increases.
Thus, the correct statement is "The relationship is directly proportional; as temperature increases, volume increases in the same way".
Learn more here: brainly.com/question/16927784