Answer:
Probably because the Bernoulli effect (lift) is insufficient in thinner air to keep the plane aloft - increasing the angle of attack will increase the lift on the airplane
The mountains can and will block airflow from higher pressure systems that come in from a coast and won't combine to nake storms
Black coaches now lead 50% of National Basketball Association teams
It's been a transformative year for the NBA when it comes to diversity within the coaching ranks. In the last 12 months, eight coaching jobs have been filled by Black candidates.
<h3><em>
SOOOOO THE ANSWER IS ACRONYMIC SENTENCE IM 99.99% SURE</em></h3>
First compute the resultant force F:



Then use Newton's second law to determine the acceleration vector
for the particle:



Let
and
denote the particle's position and velocity vectors, respectively.
(a) Use the fundamental theorem of calculus. The particle starts at rest, so
. Then the particle's velocity vector at <em>t</em> = 10.4 s is



If you don't know calculus, then just use the formula,

So, for instance, the velocity vector at <em>t</em> = 10.4 s has <em>x</em>-component

(b) Compute the angle
for
:

so that the particle is moving at an angle of about 313º counterclockwise from the positive <em>x</em> axis.
(c) We can find the velocity at any time <em>t</em> by generalizing the integral in part (a):


Then using the fundamental theorem of calculus again, we have

where
is the particle's initial position. So we get



So over the first 10.4 s, the particle is displaced by the vector

or a net distance of about 395 m away from its starting position, in the same direction as found in part (b).
(d) See part (c).
Answer:
The frequency of the green light is 
Explanation:
The visible region is part of the electromagnetic spectrum, any radiation of that electromagnetic spectrum has a speed of
in the vacuum.
Green light is part of the visible region. Therefore, the frequency can be determined by the following equation:
(1)
Where c is the speed of light,
is the wavelength and
is the frequency.
Notice that since it is electromagnetic radiation, equation 1 can be used. Remember that light propagates in the form of an electromagnetic wave (that is a magnetic field perpendicular to an electric field).
Then,
can be isolated from equation 1
(2)
Notice that it is necessary to express the wavelength in units of meters.
⇒ 
Hence, the frequency of the green light is 