<span>We know that pressure is the force applied into a surface, in our case the wall of the room, so then first we will calculate the surface of this wall:
S = 2.2 * 3.2 = 7.04 m2
Then we also know the atmospheric pressure in normal conditions is 1 atm. That is the same 1 atm = 101325 Pascals or 101325 N/m2
Now we need to use the formula : P = F/S where P is pressure, F is force and S is surface to calculate the force:
F = P * S = 101325 * 7.04 = 713,328 Newtons
Conclusion: the force acts on the wall due the air inside the room is 713,328 N</span>
kinetic energy is usually measured in joule J which is equals to kgm²/s²
So your finding acceleration first which is 30m/s divides by 6 seconds equals 5m/s^s and then multiply that by 1,400 kg and you have net force which is 7,000N
The wavelength of the infrared radiation is λ =
×
m.
<h3>What is infrared radiation?</h3>
An infrared telescope is tuned to detect infrared radiation with a frequency of 9.45 THz.
We know that,
1 THz = 10¹² Hz
So,
f = 9.45 × 10¹² Hz
We need to find the wavelength of the infrared radiation.
λ=c/f
λ = 3×
/9.45×
λ = 3.174 ×
m
The term "infrared radiation" (IR) refers to a part of the electromagnetic radiation spectrum with wavelengths between about 700 nanometers (nm) and one millimeter (mm). Longer than visible light waves but shorter than radio waves are infrared waves.
Electromagnetic radiation with wavelengths longer than those of visible light is known as infrared, also known as infrared light. Since it is undetectable to the human eye, The typical range of wavelengths considered to be infrared (IR) is from about 1 millimeter to the nominal red edge of the visible spectrum, or about 700 nanometers.
To learn more about infrared radiation from the given link:
brainly.com/question/13163856
#SPJ4