Answer:
3 seconds
Explanation:
Since h(t) represents the height and t represents the time, we can set the equation equal to 150 to find t.
-16t^2+96t+6=150
Subtract 150 from both sides to set the equation equal to 0, to find the solutions.
-16t^2+96t-144=0
Factor out -16, because all of the terms are divisible by it.
-16(t^2+6t+9)=0
Now we can focus on the terms inside the parenthesis and factor it again.
t^2-6t+9=0
We need to find two value that can be multiplied to get 9 and added to get -6.
-3 and -3 works.
Thus, we get (x-3)(x-3).
Now solve for 0.
x-3=0
x=3
The object reaches its maximum height after 3 seconds.
Answer:
distance when the weight is 8 kg is 26.66 cm
Explanation:
given data
distance d2 = 10 cm
weight w2 = 3 kg
weight w1 = 8 kg
to find out
distance when the weight is 8 kg
solution
we consider here distance d1 when weight is 8 kg
so equation will be
d1/d2 = w1/w2
d/10 = 8/ 3
so d = 8/3 × 10
so d = 26.66
distance when the weight is 8 kg is 26.66 cm
Answer: - 25.2 kgm/s
Explanation: The mass of the ball is 0.5kg, and the initial velocity = 10.6m/s.
The final velocity is in opposite direction of the initial hence final velocity (v) = - 19.9 m/s
Impulse = change in momentum = final momentum - initial momentum.
Final momentum = mass × final velocity
Final momentum = - 19.9 × 0.5
Final momentum = - 9.95 kgm/s
Initial momentum = mass × initial velocity
Initial momentum = 0.5 × 10.6 = 5.3kgm/s
Change in momentum = final momentum - initial momentum = - 19.9 - 5.3
Change in momentum = - 25.2 kgm/s
The negative sign implies that the change in momentum is the opposite direction relative to the first.
Answer:
Nativism was rejected in the late 1600’s and early 1700’s by a group, of philosophers called?
Empiricists Is the Correct Answer!
xXxAnimexXx
Happy Labor day!
Answer:
Because the bike is slowing down at a faster rate than you are.
Explanation:
An object in motion will stay in motion. The bike is slowing down faster than the passenger. The bike will slow the rider down because the rider is hanging on but you will feel the force when the bike is breaking.
Newton's first law of motion - sometimes referred to as the law of inertia. An object at rest stays at rest and an object in motion stays in motion with the same speed and in the same direction unless acted upon by an unbalanced force.