1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Zinaida [17]
2 years ago
5

Which statement correctly describes the relationship between the volume of a gas and its temperature, in Kelvin, assuming pressu

re is held constant?
1. The relationship is inversely proportional; as temperature increases, volume decreases in the same way.

2. The relationship is directly proportional; as temperature increases, volume increases in the same way.

3. The relationship is inversely proportional; as temperature increases, volume increases in the same way.

4. The relationship is directly proportional; as temperature increases, volume decreases in the same way.
Physics
1 answer:
nekit [7.7K]2 years ago
5 0

The relationship is directly proportional; as temperature increases, volume increases in the same way.

Charles's law states that at a constant pressure, the volume of fixed a mass of a gas is directly proportional to its absolute temperature or kelvin temperature.

Mathematically, this law can be written as follows;

V = kT\\\\where;\\k \ \ is \ a \ constant \\\\T \ is \ kelvin \ temperature\\\\V \ is \ the \ volume \ of \ the \ gas

This law explains the direct relationship between Volume of the gas and its Kelvin temperature. That is, as Temperature increases, the volume of the gas increases.

Thus, the correct statement is "The relationship is directly proportional; as temperature increases, volume increases in the same way".

Learn more here: brainly.com/question/16927784

You might be interested in
Samuel tripped while playing basketball and skinned his knee on the concrete. Many of the skin cells on that knee were killed or
kvv77 [185]
The answer is B. Old cells need to create new cells to replenish the ones that were lost.
3 0
2 years ago
A 230-km-long high-voltage transmission line 2.0 cm in diameter carries a steady current of 1,100 A. If the conductor is copper
Molodets [167]

Answer:

28.23 years

Explanation:

I = 1100 A

L = 230 km = 230, 000 m

diameter = 2 cm

radius, r = 1 cm = 0.01 m

Area, A = 3.14 x 0.01 x 0.01 = 3.14 x 10^-4 m^2

n = 8.5 x 10^28 per cubic metre

Use the relation

I = n e A vd

vd = I / n e A

vd = 1100 / (8.5 x 10^28 x 1.6 x 10^-19 x 3.14 x 10^-4)

vd = 2.58 x 10^-4 m/s

Let time taken is t.

Distance = velocity x time

t = distance / velocity = L / vd

t = 230000 / (2.58 x 10^-4) = 8.91 x 10^8 second

t = 28.23 years

5 0
3 years ago
Read 2 more answers
A professor designing a class demonstration connects a parallel-plate capacitor to a battery, so that the potential difference b
Lesechka [4]

Answer:

a)  Q = 397.57 pC , Q = 3.18 104 pC , b) C = 1.157 10⁻¹⁰ F ,  V = 3.4375 V ,

c)  U = 54.7 nJ ,  d) ΔU = 54 nJ,

Explanation:

a) The capacity of a capacitor is defined

        C = Q / V

        Q = C V

         

can also be calculated using geometry consideration

        C = e or A / d

         

we reduce to the SI system

       A = 25.0 cm² (1 m / 10² cm) 2 = 25.0 10⁻⁴ m²

       d = 1.53 cm = 1.53 10⁻² m

we substitute

         Q = eo A / d V

         Q = 8.85 10⁻¹² 25 10⁻⁴ / 1.53 10⁻² 275

         Q = 3.9757 10⁻¹⁰ C

         

let's reduce to pC

         Q = 3.9757 10⁻¹⁰ C (10¹² pC / 1 C)

          Q = 397.57 pC

when the capacitor is introduced into the water the dielectric constant is different

           Q = k Q₀

           Q = 80 397.57

           Q = 3.18 104 pC

b) Find capacitance and voltage after submerged in water

           C = k C₀

           C = 80 8.85 10⁻¹² 25 10⁻⁴ / 1.53 10⁻²

           C = 1.157 10⁻¹⁰ F

           V = Vo / k

            V = 275/80

            V = 3.4375 V

c) The stored energy is

             U = ½ C V²

              U = ½, 85 10⁻¹² 25 10⁻⁴ / 1.53 10⁻²     275²

             U = 5.47 10⁻⁸ J

let's reduce to nJ

              109 nJ = 1 J

               U = 54.7 nJ

d) energy after submerging

             U = ½ (kCo) (Vo / k) 2

             U = ½ Co Vo2 / k

             U = U₀ / k

             U = 54.7 / 80 nJ

              U = 0.68375 nJ

the energy change is

         ΔU = U₀ -U

          ΔU = 54.7 - 0.687375

           

6 0
2 years ago
A BMX bicycle rider takes off from a ramp at a point 2.4 m above the ground. The ramp is angled at 40 degrees from the horizonta
adoni [48]

Answer:

The BMX lands 5.4 m from the end of the ramp.

Explanation:

Hi there!

The position of the BMX is given by the position vector "r":

r = (x0 + v0 · t · cos α, y0 + v0 · t · sin α + 1/2 · g · t²)

Where:

r = position vector at time t

x0 = initial horizontal position

v0 = initial velocity

α = jumping angle

y0 = initial vertical position

g = acceleration due to gravity (-9.8 m/s² considering the upward direction as positive)

Please, see the attached graphic for a better understanding of the situation. At final time, when the bicycle reaches the ground, the vector position will be "r final" (see figure). The y-component of the vector "r final" is - 2.4 m (placing the origin of the frame of reference at the jumping point). With that information, we can use the equation of the y-component of the vector "r" (see above) to calculate the time of flight. With that time, we can then obtain the x-component (rx in the figure) of the vector "r final". Then:

y = y0 + v0 · t · sin α + 1/2 · g · t²

-2.4 m = 0 m + 5.9 m/s · t · sin 40° - 1/2 · 9.8 m/s² · t²

0 = -4.9 m/s² · t² + 5.9 m/s · t · sin 40° + 2.4 m

Solving the quadratic equation:

t = 1.2 s

Now, we can calculate the x-component of the vector "r final" that is the horizontal distance traveled by the bicycle:

x = x0 + v0 · t · cos α

x = 0 m + 5.9 m/s · 1.2 s · cos 40°

x = 5.4 m

The BMX lands 5.4 m from the end of the ramp.

Have a nice day!

8 0
2 years ago
In comparison with other ocean basins, major sedimentary features such as continental rises and abyssal plains are relatively ra
Maksim231197 [3]

Answer:

Why are continental rises and abyssal plains relatively rare in the Pacific? This is because the extensive system of trenches along the active margins of the Pacific, trap much of the sediments flowing off the continents, preventing them from building the broad, flat abyssal plains typical of the Atlantic ocean basins.

3 0
2 years ago
Other questions:
  • Match the measurement with the proper Sl unit<br> Acceleration:<br> Velocity<br> Distance:
    8·2 answers
  • Solar cells are often coated with a transparent, thin film of silicon monoxide (n = 1.45) to minimize reflective losses from the
    15·1 answer
  • Why is it inaccurate to use mgy to calculate the potential energy of a satellite orbiting earth at a height one earth radius abo
    7·1 answer
  • An unknown solution has a pH of 8. How would you classify this solution?
    11·1 answer
  • a scientist is creating a new synthetic material. the material’s density is 6.1 g/cm3. which sentences describe how the scientis
    14·2 answers
  • A 220 kg crate hangs from the end of a rope of length L = 14.0 m. You push horizontally on the crate with a varying force F to m
    6·1 answer
  • Which of the following best describes a benefit of one type of nonrenewable energy? . A. Coal deposits are found on nearly every
    7·1 answer
  • A mass of 0.1 kg of helium fills a 0.2 m3 rigid tank at 350 kPa. The vessel is heated until the pressure is 700 kPa. Calculate t
    10·1 answer
  • A baseball (A, weight 0.33 lb) moves horizontally at 20 ft/s when it strikes a stationary block (B, weight 10 lb), supported by
    12·1 answer
  • Which action has more power
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!