Explanation :
The balanced chemical reaction is,

The expression for the rates of consumption of the reactants are:
The rate of consumption of
= ![-\frac{1}{5}\frac{d[Br^-]}{dt}](https://tex.z-dn.net/?f=-%5Cfrac%7B1%7D%7B5%7D%5Cfrac%7Bd%5BBr%5E-%5D%7D%7Bdt%7D)
The rate of consumption of
= ![-\frac{d[BrO_3^-]}{dt}](https://tex.z-dn.net/?f=-%5Cfrac%7Bd%5BBrO_3%5E-%5D%7D%7Bdt%7D)
The rate of consumption of
= ![\frac{1}{6}\frac{d[H^+]}{dt}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B6%7D%5Cfrac%7Bd%5BH%5E%2B%5D%7D%7Bdt%7D)
The expression for the rates of formation of the products are:
The rate of consumption of
= ![+\frac{1}{3}\frac{d[Br_2]}{dt}](https://tex.z-dn.net/?f=%2B%5Cfrac%7B1%7D%7B3%7D%5Cfrac%7Bd%5BBr_2%5D%7D%7Bdt%7D)
The rate of consumption of
= ![+\frac{1}{3}\frac{d[H_2O]}{dt}](https://tex.z-dn.net/?f=%2B%5Cfrac%7B1%7D%7B3%7D%5Cfrac%7Bd%5BH_2O%5D%7D%7Bdt%7D)
Answer:
There are other details missing in the question. i.e Assume that x is much larger than the separation d between the charges in the dipole, so that the approximate expression for the electric field along the dipole axis E = p/2πε0y3 can be used, where p is the dipole moment, and y is the distance between ions. A) What is magnitude______N B) Direction? +x-direction or -x-direction C) Is this force attractive or repulsive?
A) Magnitude of electric force = 6.576 x 10 raised to power -13 N
B) Since the force direction is always dependent on the electric field and electric field = F/q, since the chlorine has a negative charge as such the direction of the electric force will be in the X - direction
C) Since the charges are of different nature, as such the force between them will be ATTRACTIVE.
Explanation:
The detailed steps is shown in the attachment
Answer : The final temperature of the metal block is, 
Explanation :

As we know that,

.................(1)
where,
q = heat absorbed or released
= mass of aluminum = 55 g
= mass of water = 0.48 g
= final temperature = ?
= temperature of aluminum = 
= temperature of water = 
= specific heat of aluminum = 
= specific heat of water= 
Now put all the given values in equation (1), we get
![55g\times 0.900J/g^oC\times (T_{final}-25)^oC=-[0.48g\times 4.184J/g^oC\times (T_{final}-25)^oC]](https://tex.z-dn.net/?f=55g%5Ctimes%200.900J%2Fg%5EoC%5Ctimes%20%28T_%7Bfinal%7D-25%29%5EoC%3D-%5B0.48g%5Ctimes%204.184J%2Fg%5EoC%5Ctimes%20%28T_%7Bfinal%7D-25%29%5EoC%5D)

Thus, the final temperature of the metal block is, 
graphite is a form of carbon in which carbon atoms are arranged in a layer.
i mean technically, no. only because water is water and water makes things wet. you know? unless you pour water onto water then idk honestly, truly...