The heat transfer which is in steady state, the heat transfer rate to the wall is equal to the wall.
<u>Explanation:</u>
- The convection transfer of heat to the wall is

- Here,
is the temperature of solid surface,
is the temperature of moving fluid stream which is adjacent of solid surface, h is the heat transfer coefficient. - The coefficient of convection heat transfers outer surface contains 3 times to the inner surface which experience smaller drop of temperature for 3 times that compares to inner surface.
- Hence, the temperatures outer surface get close to the surroundings of air temperature.
Answer:

Explanation:
The temperature can be defined as the measurement of the intensity of the heat present in the object. Fahrenheit, kelvin and centigrade are the common scale used for measuring Temperature.
Given:
T1=170C
To convert to Kelvin
= 17+273 =290K
T1 = 290K
Pressure (P)= 95KPa
Specific heat ratio = CP/CV= K
WhereK=1.005/0.718
K = 1.4
The final temperature can be calculated using the formula below.
T2 = CP/CV × T1
=. K × T1
T2 = 1.4 × 290

Explanation:
uuui ielts k oshru with the best of my life u
Answer:
B. The thickness of the heated region near the plate is increasing.
Explanation:
First we know that, a boundary layer is the layer of fluid in the immediate vicinity of a bounding surface where the effects of viscosity are significant. The fluid is often slower due to the effects of viscosity. Advection i.e the transfer of heat by the flow of liquid becomes less since the flow is slower, thereby the local heat transfer coefficient decreases.
From law of conduction, we observe that heat transfer rate will decrease based on a smaller rate of temperature, the thickness therefore increases while the local heat transfer coefficient decreases with distance.
Answer:
1. Manpower Management
2. Productive Meetings
3.Establish administrative policies, procedures, and standards.
4. High command over assets management.
5. Specific field related knowledge of procurement.
6. Compliance and EHS knowledge.
Explanation: