Answer:
<u>Option-(A)</u>
Explanation:
<u>Typical applications for the high carbon steels includes the following;</u>
It is heat treatable, relatively large combinations of mechanical characteristics. Typical applications: railway wheels and tracks, gears, crankshafts, and machine parts.
Answer:
Plans; blueprints.
Explanation:
In Engineering, it is a common and standard practice to use drawings and models in the design and development of various tools or systems that are being used for proffering solutions to specific problems in different fields such as engineering, medicine, telecommunications and industries.
Hence, a design engineer make use of drawings such as pictorial drawings, sketches, or technical drawing to communicate ideas about a design to others, to record and retain informations (ideas) so that they're not forgotten and to analyze how different components of a design work together.
Technical drawing is mainly implemented with CAD (computer-aided design) software and is typically used in plans and blueprints that show how to construct an object.
Additionally, technical drawings show in detail how the pieces of something (object) relate to each other, as well as accurately illustrating the actual (true) shape and size of an object in the design and development process.
Answer:
c) 1.75 g/cm³
Explanation:
Given that
Radii of the A ion, r(c) = 0.137 nm
Radii of the X ion, r(a) = 0.241 nm
Atomic weight of the A ion, A(c) = 22.7 g/mol
Atomic weight of the X ion, A(a) = 91.4 g/mol
Avogadro's number, N = 6.02*10^23 per mol
Solution is attached below
Answer:
coupling is in tension
Force = -244.81 N
Explanation:
Diameter of Hose ( D1 ) = 35 mm
Diameter of nozzle ( D2 ) = 25 mm
water gage pressure in hose = 510 kPa
stream leaving the nozzle is uniform
exit speed and pressure = 32 m/s and atmospheric
<u>Determine the force transmitted by the coupling between the nozzle and hose </u>
attached below is the remaining part of the detailed solution
Inlet velocity ( V1 ) = V2 ( D2/D1 )^2
= 32 ( 25 / 35 )^2
= 16.33 m/s
Answer:
6.37 inch
Explanation:
Thinking process:
We need to know the flow rate of the fluid through the cross sectional pipe. Let this rate be denoted by Q.
To determine the pressure drop in the pipe:
Using the Bernoulli equation for mass conservation:

thus

The largest pressure drop (P1-P2) will occur with the largest f, which occurs with the smallest Reynolds number, Re or the largest V.
Since the viscosity of the water increases with temperature decrease, we consider coldest case at T = 50⁰F
from the tables
Re= 2.01 × 10⁵
Hence, f = 0.018
Therefore, pressure drop, (P1-P2)/p = 2.70 ft
This occurs at ae presure change of 1.17 psi
Correlating with the chart, we find that the diameter will be D= 0.513
= <u>6.37 in Ans</u>