Answer:
2.0 atoms of K and 1.0 atom of S are needed to form a molecule of potassium sulfide.
Explanation:
- The potassium sulfide has the chemical formula <em>K₂S.</em>
∴ Every 1.0 molecule of K₂S composed of 2.0 atom of K and 1.0 atoms of S.
<u><em>So, 2.0 atoms of K and 1.0 atom of S are needed to form a molecule of potassium sulfide.</em></u>
Answer:
(A) A ball sitting on the ground
Explanation:
Answer:
(a) r = 6.26 * 10⁻⁷cm
(b) r₂ = 6.05 * 10⁻⁷cm
Explanation:
Using the sedimentation coefficient formula;
s = M(1-Vρ) / Nf ; where s is sedimentation coefficient, M is molecular weight, V is specific volume of protein, p is density of the solvent, N is Avogadro number, f if frictional force = 6πnr, n is viscosity of the medium, r is radius of particle
s = M ( 1 - Vρ) / N*6πnr
making r sbjct of formula, r = M (1 - Vρ) / N*6πnrs
Note: S = 10⁻¹³ sec, 1 KDalton = 1 *10³ g/mol, I cP = 0.01 g/cm/s
r = {(3.1 * 10⁵ g/mol)(1 - (0.732 cm³/g)(1 g/cm³)} / { (6.02 * 10²³)(6π)(0.01 g/cm/s)(11.7 * 10⁻¹³ sec)
r = 6.26 * 10⁻⁷cm
b. Using the formula r₂/r₁ = s₁/s₂
s₂ = 0.035 + 1s₁ = 1.035s₁
making r₂ subject of formula; r₂ = (s₁ * r₁) / s₂ = (s₁ * r₁) / 1.035s₁
r₂ = 6.3 * 10⁻⁷cm / 1.035
r₂ = 6.05 * 10⁻⁷cm
Answer:
0.18× 10²³ molecules
Explanation:
Given data:
Mass of copper hydroxide = 3.30 g
Number of molecules = ?
Solution:
Number of moles = mass/molar mass
Number of moles = 3.30 g/97.56 g/mol
Number of moles = 0.03 mol
Avogadro number:
The given problem will solve by using Avogadro number.
It is the number of atoms , ions and molecules in one gram atom of element, one gram molecules of compound and one gram ions of a substance. The number 6.022 × 10²³ is called Avogadro number.
1 mole = 6.022 × 10²³ molecules
0.03 mol × 6.022 × 10²³ molecules / 1mol
0.18× 10²³ molecules
Answer:
0.00735°C
Explanation:
By seeing the question, we can see the elevation in boiling point with addition of BaCl₂ in water
⠀
⠀
⠀
<u>The</u><u> </u><u>elevation</u><u> </u><u>in</u><u> </u><u>boiling</u><u> </u><u>point</u><u> </u><u>is</u><u> </u><u>a</u><u> </u><u>phenomenon</u><u> </u><u>in</u><u> </u><u>which</u><u> </u><u>there</u><u> </u><u>is</u><u> </u><u>increase</u><u> </u><u>in</u><u> </u><u>boiling</u><u> </u><u>point</u><u> </u><u>in</u><u> </u><u>solution</u><u>,</u><u> </u><u>when</u><u> </u><u>the</u><u> </u><u>particular</u><u> </u><u>type</u><u> </u><u>of</u><u> </u><u>solute</u><u> </u><u>is</u><u> </u><u>added</u><u> </u><u>to</u><u> </u><u>pure</u><u> </u><u>solvent</u><u>.</u>
⠀
⠀
⠀
⠀
Where 'i' is van't hoff factor which represents the ratio of observed osmotic pressure and the value to be expected.
and 'i' is 3 (as given in the question)
⠀
'Kb' is molal boiling point constant. And it's value is 0.51°C/mol(given in question)
⠀
'm' represent the molality of solution. Molatity is no. of moles of solution present in 1kg of solution.
⠀
⠀
<u>To</u><u> </u><u>find</u><u> </u><u>molality</u><u>,</u><u> </u><u>we</u><u> </u><u>have</u><u> </u><u>to</u><u> </u><u>divide</u><u> </u><u>no</u><u>.</u><u> </u><u>of</u><u> </u><u>moles</u><u> </u><u>of</u><u> </u><u>solute</u><u> </u><u>by</u><u> </u><u>weight</u><u> </u><u>of</u><u> </u><u>solution</u>
⠀
While first we need to no. of moles
⠀
⠀
<u>Now</u><u>,</u><u> </u><u>we</u><u> </u><u>will</u><u> </u><u>find</u><u> </u><u>molality</u>
⠀
⠀
⠀
⠀
⠀
⠀
⠀
<u>Henceforth</u><u>,</u><u> </u><u>the</u><u> </u><u>change</u><u> </u><u>in</u><u> </u><u>boiling</u><u> </u><u>point</u><u> </u><u>is</u><u> </u><u>0</u><u>.</u><u>0</u><u>0</u><u>7</u><u>3</u><u>5</u><u>°</u><u>C</u><u>.</u>