When iron rusts and forms iron oxide, the iron oxide has more mass than the iron because there are more iron atoms in iron oxide than in pure iron.
The process of rust occurs when pure iron is exposed to air and moisture. Rust is the oxidation of pure iron to iron II oxide (Fe2O3).
We can see that there are two iron atoms per mole of Fe2O3 whereas there is only one iron atom in each mole of pure iron.
Therefore, iron oxide has more mass than the iron because there are more iron atoms in iron oxide than in pure iron.
Learn more; brainly.com/question/18376414
You should always study. you can be above your class. thats what i do.. search google for ur course. they can tell u some key points for it. u should even study what you know and want to know as well.
The molarity of KOH is 0.1055 M
<u><em> calculation</em></u>
Step 1: write the equation for reaction between H₂C₂O₄.2H₂O and KOH
H₂C₂O₄.2H₂O + 2 KOH → K₂C₂O₄ +4 H₂O
step 2: find the moles of H₂C₂O₄.2H₂O
moles = mass÷ molar mass
from periodic table the molar mass H₂C₂O₄.2H₂O= (1 x2) +(12 x2) +(16 x4) + 2(18)=126 g/mol
= 0.2000 g ÷ 126 g/mol =0.00159 moles
step 3: use the mole ratio to calculate the moles of KOH
H₂C₂O₄.2H₂O : KOH is 1:2
therefore the moles of KOH =0.00159 x 2 = 0.00318 moles
step 4: find molarity of KOH
molarity = moles/volume in liters
volume in liters = 30.12/1000=0.03012 L
molarity is therefore = 0.00318/0.03012 =0.1055 M
H₂SO₄ represents Sulphuric acid or SO₄²⁻ ion when in aqueous as well as H⁺ and a little amount of HSO₄⁻ all of these ions can form in aqueous on dissolving H₂SO₄
Answer:
the metal loses electrons to become a positively charged cation
Explanation: