Answer:
The equilibrium constant for the reversible reaction = 0.0164
Explanation:
At equilibrium the rate of forward reaction is equal to the rate of backwards reaction.
The reaction is given as
A ⇌ B
Rate of forward reaction is first order in [A] and the rate of backward reaction is also first order in [B]
The rate of forward reaction = |r₁| = k₁ [A]
The rate of backward reaction = |r₂| = k₂ [B]
(Taking only the magnitudes)
where k₁ and k₂ are the forward and backward rate constants respectively.
k₁ = 0.010 s⁻¹
k₂ = 0.0610 s⁻¹
|r₁| = 0.010 [A]
|r₂| = 0.016 [B]
At equilibrium, the rate of forward and backward reactions are equal
|r₁| = |r₂|
k₁ [A] = k₂ [B] (eqn 1)
Note that equilibrium constant, K, is given as
K = [B]/[A]
So, from eqn 1
k₁ [A] = k₂ [B]
[B]/[A] = (k₁/k₂) = (0.01/0.0610) = 0.0163934426 = 0.0164
K = [B]/[A] = (k₁/k₂) = 0.0164
Hope this Helps!!!
Answer: option B
Explanation: since nuclear fission involves the decay of larger nuclide into smaller nuclei along with Neutron when it is collide with Neutron.
Example Decay of U-235 into Kr and Ba along with 3 neutrons
Answer:
Final volume is 3.50L
Explanation:
It is possible to find volume of a gas using combined gas law:

<em>Where P is pressure, V is volume and T is temperature of 1: initial state and 2: final state</em>
If initial state of the gas is:
1.75L of a gas is at 700K and is under 250kPa of pressure
And final state is:
298K and 53.2kPa.
Replacing:

0.625L = 0.1785*V₂
<em>3.50L = V₂</em>
Thus, <em>final volume is 3.50L</em>
Small crystals
<span>white, brown </span>
<span>hard as in solid at room temp </span>
<span>sweet </span>