1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alexxx [7]
3 years ago
6

For figure ABCDEF shown here, identify the image after a clockwise rotation of 240°, or

Mathematics
1 answer:
hammer [34]3 years ago
8 0

Answer:

FABCDE

Step-by-step explanation:

divide 240 by 60 and  you get 4 turns

You might be interested in
A+b=180<br> A=-2x+115<br> B=-6x+169<br> What is the value of B?
natulia [17]
The answer is:  " 91 " .   
___________________________________________________
                    →    " B = 91 " .
__________________________________________________ 

Explanation:
__________________________________________________
Given:  
__________________________________________________
    "  A +  B = 180 " ;

  "A =  -2x + 115 " ;   ↔  A =  115 − 2x ;  

  "B = - 6x + 169 " ;  ↔  B = 169 − 6x ;  
_____________________________________________________
METHOD 1)
_____________________________________________________
Solve for "x" ; and then plug the solved value for "x" into the expression given for "B" ; to  solve for "B"
_____________________________________________________

(115 − 2x) + (169 − 6x) = 

  115 − 2x + 169 − 6x = ?

→ Combine the "like terms" ;  as follows:

      + 115 + 169 = + 284 ; 

 − 2x − 6x = − 8x ; 
_________________________________________________________
And rewrite as:

 " − 8x + 284 " ; 
_________________________________________________________
   →  " - 8x + 284 = 180 " ; 

Subtract:  "284" from each side of the equation:

  →  "  - 8x + 284 − 284 = 180 − 284 " ; 

to get:

 →  " -8x = -104 ; 

Divide EACH SIDE of the equation by "-8 " ; 
    to isolate "x" on one side of the equation; & to solve for "x" ; 

→ -8x / -8 = -104/-8 ; 

→  x = 13
__________________________________________________________
Now, to find the value of "B" :
__________________________________________________________
  "B = - 6x + 169 " ;  ↔  B = 169 − 6x ;  

↔  B = 169 − 6x ;  

         = 169 − 6(13) ;   ===========> Plug in our "solved value, "13",  for "x" ;

         = 169 − (78) ; 

         = 91 ;

   B   = " 91 " .
__________________________________________________
The answer is:  " 91 " . 
____________________________________________________
     →     " B = 91 " . 
____________________________________________________
Now;  let us check our answer:
____________________________________________________
               →   A + B = 180 ;  
____________________________________________________
Plug in our "solved answer" ; which is "91", for "B" ;  as follows:
________________________________________________________

→  A + 91 = ? 180? ;  

↔  A = ? 180 − 91 ? ; 

→  A = ?  -89 ?  Yes!
________________________________________________________
→  " A =  -2x + 115 " ;   ↔  A =  115 − 2x ;  

Plug in our solved value for "x"; which is: "13" ; 

" A = 115 − 2x " ; 

→  A = ? 115 − 2(13) ? ;

→  A = ? 115 − (26) ? ; 

→  A = ? 29 ? Yes!
_________________________________________________ 
METHOD 2)
_________________________________________________
Given:  
__________________________________________________
    "  A +  B = 180 " ;

  "A =  -2x + 115 " ;   ↔  A =  115 − 2x ;  

  "B = - 6x + 169 " ;  ↔  B = 169 − 6x ; 

→  Solve for the value of "B" :
_______________________________________________________
 A + B = 180 ;  

→ B = 180 − A ; 

→ B = 180 − (115 − 2x) ; 

→ B = 180 − 1(115 − 2x) ;  ==========> {Note the "implied value of "1" } ; 
__________________________________________________________
Note the "distributive property" of multiplication:__________________________________________________  a(b + c)  = ab +  ac ;  <u><em>AND</em></u>:
  a(b − c)  = ab − ac .________________________________________________________
Let us examine the following part of the problem:
________________________________________________________
              →      " − 1(115 − 2x)  " ; 
________________________________________________________

→  "  − 1(115 − 2x) " = (-1 * 115) − (-1 * 2x) ;

                                =  -115 − (-2x) ;
                         
                                =  -115  +  2x ;        
________________________________________________________
So we can bring down the:  " {"B = 180 " ...}"  portion ; 

→and rewrite:
_____________________________________________________

→  B = 180 − 115 + 2x ; 

→  B = 65 + 2x ; 
_____________________________________________________
Now;  given:   "B = - 6x + 169 " ;  ↔  B = 169 − 6x ; 

→ " B =  169 − 6x  =  65 + 2x " ; 
______________________________________________________
→  " 169 − 6x  =  65 + 2x "

Subtract "65" from each side of the equation;  & Subtract "2x" from each side of the equation:

→  169 − 6x − 65 − 2x  =  65 + 2x − 65 − 2x ; 

to get:

→   " - 8x + 104 = 0 " ;
 
Subtract "104" from each side of the equation:

→   " - 8x + 104 − 104 = 0 − 104 " ;

to get: 

→   " - 8x = - 104 ;

Divide each side of the equation by "-8" ; 
   to isolate "x" on one side of the equation; & to solve for "x" ; 

→  -8x / -8  = -104 / -8 ; 

to get:

→  x =  13 ; 
______________________________________________________

Now, let us solve for:  " B " ;  → {for which this very question/problem asks!} ; 

→  B = 65 + 2x ;  

Plug in our solved value, " 13 ",  for "x" ; 

→ B = 65 + 2(13) ; 

        = 65 + (26) ;  

→ B =  " 91 " .
_______________________________________________________
Also, check our answer:
_______________________________________________________
Given:  "B = - 6x + 169 " ;   ↔  B = 169 − 6x = 91 ; 

When "x  = 13 " ; does: " B = 91 " ? 

→ Plug in our "solved value" of " 13 " for "x" ;

      → to see if:  "B = 91" ; (when "x = 13") ;

→  B = 169 − 6x ; 

         = 169 − 6(13) ; 

         = 169 − (78)______________________________________________________
→ B = " 91 " . 
______________________________________________________
6 0
3 years ago
Aiden and Haisem are going to eat the same amount of hamburgers and fries, but from different restaurants. Aiden goes to Burger
Paha777 [63]

Answer:

the burgers be 3 and fries be 2

Step-by-step explanation:

The computation is shown below:

Let us assume burgers be x

And, the fries be y

Now according to the questiojn

1.25x + 0.50y = $4.75

1.50x + 0.99y = $6.48

Now multiply by 1.2 in the first equation

1.50x + 0.6y = $5.70

1.50x + 0.99y = $6.48

-0.39y = -0.78

y = 2

Now put the value of y in any of the above equation

1.25x + 0.50(2) = $4.75

x = 3

Hence, the burgers be 3 and fries be 2

6 0
3 years ago
How Many Solutions?<br> 3x - 7 = 3(x - 3) + 2<br> No Solution<br> One Solution<br> Infinite Solution
prisoha [69]

Answer:

Infinite Solutions

Step-by-step explanation:

3x-7=3x(x-3)+2

3x-7=3x-9+2 - Distributive Property

3x-7=3x-7 - adding the right side together

3 0
3 years ago
CAN SOME ONE PLZ HELP I NEED HELP
Romashka [77]

Answer:

9

Step-by-step explanation:

5 0
3 years ago
Read 2 more answers
There are 2,000 eligible voters in a precinct. A total of 500 voters are randomly selected and asked whether they plan to vote f
Ann [662]

Answer:

0.7 - 2.58 \sqrt{\frac{0.7(1-0.7)}{500}}=0.647

0.7 + 2.58 \sqrt{\frac{0.7(1-0.7)}{500}}=0.753

And the 99% confidence interval would be given (0.647;0.753).

So the correct answer would be:

a. 0.647 and 0.753

Step-by-step explanation:

Previous concepts

A confidence interval is "a range of values that’s likely to include a population value with a certain degree of confidence. It is often expressed a % whereby a population means lies between an upper and lower interval".

The margin of error is the range of values below and above the sample statistic in a confidence interval.

Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".

The population proportion have the following distribution

p \sim N(p,\sqrt{\frac{p(1-p)}{n}})

Solution to the problem

The estimated population proportion for this case is:

\hat p = \frac{350}{500}=0.7

The confidence interval would be given by this formula

\hat p \pm z_{\alpha/2} \sqrt{\frac{\hat p(1-\hat p)}{n}}

For the 99% confidence interval the value of \alpha=1-0.99=0.01 and \alpha/2=0.005, with that value we can find the quantile required for the interval in the normal standard distribution.

z_{\alpha/2}=2.58

And replacing into the confidence interval formula we got:

0.7 - 2.58 \sqrt{\frac{0.7(1-0.7)}{500}}=0.647

0.7 + 2.58 \sqrt{\frac{0.7(1-0.7)}{500}}=0.753

And the 99% confidence interval would be given (0.647;0.753).

So the correct answer would be:

a. 0.647 and 0.753

7 0
3 years ago
Other questions:
  • Plz explain me this..how we do it
    8·2 answers
  • Geraldine is picking a four-digit password by using the digits 0 through 9. She can use each digit only once. How many different
    15·2 answers
  • Parallel to y+5x=4, through (2,2); slope intercept form
    11·2 answers
  • Fred got a score of 68 on the test. Enter a division sentence using negative numbers where the quotient represents the number of
    13·2 answers
  • After dying the artists painting
    15·2 answers
  • What is the 100th term in the following sequence: 25, 36, 49, 64...
    15·1 answer
  • I NEED HELPP PLS!!!!!!!!!!!!!!!!!!!
    7·1 answer
  • Not even going to say anything other than, help​
    9·1 answer
  • What would the new coordinates be for A if the triangle was reflected over the y-axis?
    6·1 answer
  • Find the solution for the following system of equations.<br><br> y = -2x + 6 <br> y = 3x - 4
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!