Answer:
Wheel A.
Explanation:
The lesser the moment of inertia, the greater the angular acceleration. Then, the moments of inertia of each wheel are described below:
Wheel A

Wheel B


The wheel A accelerates faster in response to the torque.
<span>It reacts to the </span>motion<span>. If the mass hanging from the pulley was overwhelmingly heavier than the mass on the ramp, it'll obviously pull the ramp mass up and thus </span>friction<span> would be trying to oppose this and vice versa. </span>
Answer:
1.) Micrometres screw gauge
2.) Tape rule.
Explanation:
Given that the diameter and the length of a thin wire, approximately 1m in length, are measured as accurately as possible.
what are the best instruments to use ?
To measure the diameter of a thin wire, the best instrument to use is known as micrometres screw gauge.
And to measure the length of a thin wire up to 1 m, the measuring device can be tape rule or long metre rule.
Answer:
Option (3)
Explanation:
Nicolaus Copernicus was an astronomer from Poland, who was born on the 19th of February in the year 1473. He played a great role in the field of modern astronomy.
He was the person who contributed to the heliocentric theory. This theory describes the position of the sun in the middle of the universe, and all the planets move around the sun. This theory was initially not accepted, and after about a century it was widely accepted.
This theory describes the present-day motion of the planets around the sun in the solar system. This theory replaced the geocentric theory.
Thus, the correct answer is option (3).
Explanation:
Let
is the mass of proton. It is moving in a circular path perpendicular to a magnetic field of magnitude B.
The magnetic force is balanced by the centripetal force acting on the proton as :

r is the radius of path,

Time period is given by :


Frequency of proton is given by :

The wavelength of radiation is given by :


So, the wavelength of radiation produced by a proton is
. Hence, this is the required solution.