Answer: The speed necessary for the electron to have this energy is 466462 m/s
Explanation:
Kinetic energy is the energy posessed by an object by virtue of its motion.

K.E= kinetic energy = 
m= mass of an electron = 
v= velocity of object = ?
Putting in the values in the equation:


The speed necessary for the electron to have this energy is 466462 m/s
Answer:
= 2.83
Explanation:
F number (N) is given by the formula;
F- number = f/D
where f = focal length of lens and D = diameter of the aperture
Therefore;
F number = 17 cm/6 cm
<u> = 2.83</u>
To solve this problem, we will apply the concepts related to the linear deformation of a body given by the relationship between the load applied over a given length, acting by the corresponding area unit and the modulus of elasticity. The mathematical representation of this is given as:

Where,
P = Axial Load
l = Gage length
A = Cross-sectional Area
E = Modulus of Elasticity
Our values are given as,
l = 3.5m
D = 0.028m

E = 200GPa

Replacing we have,




Therefore the change in length is 1.93mm
Explanation:
It is given that,
Radius of circular particle accelerator, r = 1 m
The distance covered by the particle is equal to the circumference of the circular path, d = 2πr
d = 2π × 1 m
(a) The speed of satellite is given by total distance divided by total time taken as :

Let t is the period of the particle.

d = distance covered
s = speed of particle
It is given that the charged particle is moving nearly with the speed of light



(b) On the circular path, the centripetal acceleration is given by :



Hence, this is the required solution.
In 1600 when William Gilbert published De Magnete