The magnitude of the electric field for 60 cm is 6.49 × 10^5 N/C
R(radius of the solid sphere)=(60cm)( 1m /100cm)=0.6m

Since the Gaussian sphere of radius r>R encloses all the charge of the sphere similar to the situation in part (c), we can use Equation (6) to find the magnitude of the electric field:

Substitute numerical values:

The spherical Gaussian surface is chosen so that it is concentric with the charge distribution.
As an example, consider a charged spherical shell S of negligible thickness, with a uniformly distributed charge Q and radius R. We can use Gauss's law to find the magnitude of the resultant electric field E at a distance r from the center of the charged shell. It is immediately apparent that for a spherical Gaussian surface of radius r < R the enclosed charge is zero: hence the net flux is zero and the magnitude of the electric field on the Gaussian surface is also 0 (by letting QA = 0 in Gauss's law, where QA is the charge enclosed by the Gaussian surface).
Learn more about Gaussian sphere here:
brainly.com/question/2004529
#SPJ4
Answer:
broken pieces of glass from a window can't form a shadow.
Explanation:
the reason is that shadow is formed only when light rays hits an opaque object, which doesn't let light to pass through it, but glass is a transparent object, hence light rays passes through it forming no shadow..
<em>i</em><em> </em><em>hope</em><em> </em><em>it</em><em> </em><em>helped</em><em>.</em><em>.</em><em>.</em><em>.</em>
Basically the cheetah is running 31.5km/h faster than the gazelle. So to determone how long it will take to cover 9mm at that speed, you have to a lot of work. If you skip all of that work, the answer is 1.60m seconds