Answer:
Explanation:
Given that,
Mass m = 6.64×10^-27kg
Charge q = 3.2×10^-19C
Potential difference V =2.45×10^6V
Magnetic field B =1.6T
The force in a magnetic field is given as Force = q•(V×B)
Since V and B are perpendicular i.e 90°
Force =q•V•BSin90
F=q•V•B
So we need to find the velocity
Then, K•E is equal to work done by charge I.e K•E=U
K•E =½mV²
K•E =½ ×6.64×10^-27 V²
K•E = 3.32×10^-27 V²
U = q•V
U = 3.2×10^-19 × 2.45×10^6
U =7.84×10^-13
Then, K•E = U
3.32×10^-27V² = 7.84×10^-13
V² = 7.84×10^-13 / 3.32×10^-27
V² = 2.36×10^14
V=√2.36×10^14
V = 1.537×10^7 m/s
So, applying this to force in magnetic field
F=q•V•B
F= 3.2×10^-19 × 1.537×10^7 ×1.6
F = 7.87×10^-12 N
Answer:
protons (+ charge) & neutrons (neutral charge)
however protons has a positive charge so it determined what atom it is.
Answer:
42244138.951 m
Explanation:
G = Gravitational constant = 6.667 × 10⁻¹¹ m³/kgs²
r = Radius of orbit from center of earth
M = Mass of Earth = 5.98 × 10²⁴ kg
m = Mass of Satellite
The satellite revolves around the Earth at a constant speed
Speed = Distance / Time
The distance is the perimeter of the orbit

The Centripetal force of the satellite is balanced by the universal gravitational force

The radius as measured from the center of the Earth) of the orbit of a geosynchronous satellite that circles the earth is 42244138.951 m
By using drift velocity of the electron, the current flow is 7.20 ampere.
We need to know about drift velocity of electrons to solve this problem. The drift velocity can be determined as
v = I / (n . A . q)
where v is drift velocity, I is current, n is atom number density, A is surface area and q is the charge.
From the question above, we know that
d = 2.097 mm
r = (0.002097 / 2) m
v = 1.54 mm/s = 0.00154 m/s
ρ = 8.92 x 10³ kg/m³
q = e = 1.6 x 10¯¹⁹C
Find the atom density
n = Na x ρ / Mr
where Na is Avogadro's number (6.022 x 10²³), Mr is the atomic weight of copper (63.5 g/mol = 0.635 kg/mol).
n = 6.022 x 10²³ x 8.92 x 10³ / 0.635
n = 8.46 x 10²⁷ /m³
Find the current flows
v = I / (n . A . q)
0.00154 = I / (8.46 x 10²⁷ . πr² . 1.6 x 10¯¹⁹)
0.00154 = I / (8.46 x 10²⁷ . π(0.002097 / 2)² . 1.6 x 10¯¹⁹)
I = 7.20 ampere
For more on drift velocity at: brainly.com/question/25700682
#SPJ4
Answer:
The displacement of the volleyball is 2.62 m
Explanation:
Given;
initial velocity of the volleyball, u = 7.5 m/s
final velocity of the volleyball, v = 2.2 m/s
displacement of the volleyball, d = ?
Apply the following kinematic equation;
v² = u² - 2gd
2gd = u² - v²

Therefore, the displacement of the volleyball is 2.62 m