Answer:
The answer would be 0.04ohms.
Explanation:
Hopefully this helps
<h2>
Answer: The Transit method</h2>
Detecting extrasolar planets by direct observation (with a telescope) is a complicated task. This is because any planet constitutes an extremely dim light source compared to the star around which it orbits.
So, to detect this extremely dim source is quite difficult due to the glare of the star's light that dulls it.
In this sense, scientists and astronomers have made several methods to find these extrasolar planets, among which the most successful has been the transit method.
This method is based on <u>astronomical transit</u>, a phenomenon in which a body (a planet in this case) passes in front of a larger one (the star), blocking (eclipsing) its vision to some extent.
It should be noted that this is the method currently used in the search for extrasolar planets. Space agencies such as ESA (Europe) and NASA (USA) have put into orbit satellites with extremely sensitive photometric sensors to observe even the smallest variations of intensity of a star due to the passage of a planet.
Answer:
(a) 0.345 T
(b) 0.389 T
Solution:
As per the question:
Hall emf, 
Magnetic Field, B = 0.10 T
Hall emf, 
Now,
Drift velocity, 

Now, the expression for the electric field is given by:
(1)
And

Thus eqn (1) becomes
where
d = distance
(2)
(a) When 

(b) When 

The answer is 107 degrees. The geometric shape for ammonia is Trigonal Pyramidal, even though its electron geometry is “Tetrahedral”. This is because ammonia has a lone pair of electrons that occupy its space like the other 3 hydrogens in the geometric structure.
The answer 180 degrees. This is because of the linear geometric structure of carbon dioxide. The oxygen atom is on either side of the carbon atom, each is bound by a double covalent bond. All the atoms are involved in the bond and there are no one pair electrons.
The answer is tetrahedral geometry. This is because all the 4 valence electrons of the carbon are involved in a bond with a hydrogen atom. The angles in a tetrahedral geometric arrangement, such as in methane, is 109.5 degrees, where the hydrogen atoms are as far apart, from each other, as possible .