Answer:
T = 37.08 [N*m]
Explanation:
We must remember that torque is defined as the product of a force by a distance. This distance is measured from the point of application of force to the center of rotation of the rotating body.
The force is equal to the product of mass by gravitational acceleration.
![F=m*g\\F=70*9.81\\F=686.7[N]](https://tex.z-dn.net/?f=F%3Dm%2Ag%5C%5CF%3D70%2A9.81%5C%5CF%3D686.7%5BN%5D)
Now the torque can be calculated:
![T=F*r\\T=686.7*0.054\\T=37.08[N*m]](https://tex.z-dn.net/?f=T%3DF%2Ar%5C%5CT%3D686.7%2A0.054%5C%5CT%3D37.08%5BN%2Am%5D)
Im going to tell you what to do but not the result. So pay close attention: the first thing you need to do is convert miles/h to m/s. Then for the part a) <span>divide the final velocity by the initial velocity. That will give you the amount of it will take to accelerate to the final velocity.Now for the part b you </span>use the formula v=vo+at. I hope this can help you
Answer:
THE RUBBER BALL
Explanation:
From the question we are told that
The mass of the rubber ball is 
The initial speed of the rubber ball is 
The final speed at which it bounces bank 
The mass of the clay ball is 
The initial speed of the clay ball is 
The final speed of the clay ball is 
Generally Impulse is mathematically represented as
where
is the change in the linear momentum so

For the rubber is


=> 
For the clay ball


=> 
So from the above calculation the ball with the a higher magnitude of impulse is the rubber ball
Answer:120 min
Explanation:
Given
Amanda spent
of her time after school doing Home work
And
of her remaining time riding her bike
It is given that she rode her bike for 45 minutes in a week
Let t be the time after school
therefore Amanda spend
in home work and
time is left
From remaining
time she spends
time riding her bike
therefore 
thus 
therefore time spent on home work is 