We calculate it as follows:
Moles CO2 = 0.01849 g / 44 = 0.000420
<span>Mass C = 0.000420 x 12 = 0.00504 g </span>
<span>Moles H = 2 x 0.006232 / 18 = 0.000692 </span>
<span>Mass H = 0.000692 g </span>
<span>Mass O = 0.005982 - ( 0.00504 + 0.000692) = 0.00025 </span>
<span>Moles O = 0.00025 / 16 = 0.0000156 </span>
<span>C 0.000420
H 0.000692
O 0.0000156
</span>
<span>divide each by the smallest value, giving you the chemical formula as:
</span><span>
C27H44O</span>
Hello!
The force on the student is equal to the force the student exerts, so 100N is your answer.
Hope this helped :))
In binary ionic compounds the name of the cation (Metal) is first, so that’s how you know.
Answer:
a) Aqueous LiBr = Hydrogen Gas
b) Aqueous AgBr = solid Ag
c) Molten LiBr = solid Li
c) Molten AgBr = Solid Ag
Explanation:
a) Aqueous LiBr
This sample produces Hydrogen gas, because the H+ (conteined in the water) has a reduction potential higher than the Li+ from the salt. Therefore the hydrogen cation will reduce instead of the lithium one and form the gas.
b) Aqueous AgBr
This sample produces Solid Ag, because the Ag+ has a reduction potential higher than the H+ from the water. Therefore the silver cation will reduce instead of the hydrogen one and form the solid.
c) Molten LiBr
In a molten binary salt like LiBr there is only one cation present in the cathod. In this case the Li+, so it will reduce and form solid Li.
c) Molten AgBr
The same as the item above: there is only one cation present in the cathod. In this case the Ag+, so it will reduce and form solid Ag.
Answer:
the answer is b
Explanation:
convection is caused by density differences whereby warm air with less density rise above a heater and sink near a cold wind.