A. Two electrodes separated by an electrolyte that can generate an electrical current.
This may seem confusing because they give you two masses, but all you have to do is pick one to do the calculations. Personally, I would pick O2, since the molar mass is easier to calculate. The answer would be 3.3 g (rounded for sig figs). To get this, first take the 5.9 grams of O2 and convert it to moles by dividing by the molar mass of oxygen gas, which is 32. Then, multiply both by the mole-mole ratio, which is 2:2, or simply 1:1. After that, multiply that by 18g, which is the molar mass of water to get grams of water.
REMEMBER, you have to write and balance the chemical equation before you can do any of that work.
That happens to be CH4 + 2O2 => CO2 + 2H2O
Answer is: 230 g.
Chemical reaction: P₄ + 5O₂ → 2P₂O₅.
m(P₄) = 100 g.
M(P₄) = 4 · 31 g/mol = 124 g/mol.
n(P₄) = m(P₄) ÷ M(P₄) = 100g ÷ 124g/mol = 0,806 mol.
From reaction: n(P₄) : n(P₂O5) = 1 : 2.
n(P₂O₅) = 1,612 mol.
m(P₂O₅) = 1,612 mol · 142g/mol = 230g.
M - molar mass.
n - amount of substance.
Answer:
The Best Answer would be B but the correct answer is A+B --> AB
Explanation:
Answer:
The pigment that causes leaves to be green is chlorophyll. ... As chlorophyll goes away, other pigments start to show their colors. This is why leaves turn yellow or red in fall. In fall, plants break down and reabsorb chlorophyll, letting the colors of other pigments show through.