Taking

and differentiating both sides with respect to

yields
![\dfrac{\mathrm d}{\mathrm dx}\bigg[3x^2+y^2\bigg]=\dfrac{\mathrm d}{\mathrm dx}\bigg[7\bigg]\implies 6x+2y\dfrac{\mathrm dy}{\mathrm dx}=0](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cmathrm%20d%7D%7B%5Cmathrm%20dx%7D%5Cbigg%5B3x%5E2%2By%5E2%5Cbigg%5D%3D%5Cdfrac%7B%5Cmathrm%20d%7D%7B%5Cmathrm%20dx%7D%5Cbigg%5B7%5Cbigg%5D%5Cimplies%206x%2B2y%5Cdfrac%7B%5Cmathrm%20dy%7D%7B%5Cmathrm%20dx%7D%3D0)
Solving for the first derivative, we have

Differentiating again gives
![\dfrac{\mathrm d}{\mathrm dx}\bigg[6x+2y\dfrac{\mathrm dy}{\mathrm dx}\bigg]=\dfrac{\mathrm d}{\mathrm dx}\bigg[0\bigg]\implies 6+2\left(\dfrac{\mathrm dy}{\mathrm dx}\right)^2+2y\dfrac{\mathrm d^2y}{\mathrm dx^2}=0](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cmathrm%20d%7D%7B%5Cmathrm%20dx%7D%5Cbigg%5B6x%2B2y%5Cdfrac%7B%5Cmathrm%20dy%7D%7B%5Cmathrm%20dx%7D%5Cbigg%5D%3D%5Cdfrac%7B%5Cmathrm%20d%7D%7B%5Cmathrm%20dx%7D%5Cbigg%5B0%5Cbigg%5D%5Cimplies%206%2B2%5Cleft%28%5Cdfrac%7B%5Cmathrm%20dy%7D%7B%5Cmathrm%20dx%7D%5Cright%29%5E2%2B2y%5Cdfrac%7B%5Cmathrm%20d%5E2y%7D%7B%5Cmathrm%20dx%5E2%7D%3D0)
Solving for the second derivative, we have

Now, when

and

, we have
Answer:
1.50
Step-by-step explanation:
7.5 is <em>1.5</em><em> </em><em>x</em><em> </em>5 so, 1 x 1.5 = 1.5
Answer:
Step-by-step explanation:
all real numbers that are greater than -22 : x > -22
interval notation: ]- 22 ; + ∞ [
Answer:
- 3(2 +7)
- 9(3 +5)
- 16(2 +3)
- 15(2 +5)
- 8(11 +3)
Step-by-step explanation:
- 6 + 21 = 2·3 + 3·7 = 3(2 +7)
- 27 + 45 = 3^3 + 3^2·5 = 9(3 +5)
- 32 + 48 = 2^5 + 2^4·3 = 16(2 +3)
- 30 + 75 = 2·3·5 + 3·5^2 = 15(2 +5)
- 88 + 24 = 2^3·11 +2^3·3 = 8(11 +3)
In each case, the factor outside parentheses is the greatest common factor, the product of the prime factors common to both numbers. When the same factor has different powers, the least power is the common factor.
Answer:
3x^2+3x-2+8/x-1
Step-by-step explanation:
Remainder: 8
Step 1 : Turn the x-1 to a positive 1.
Step 2: Write all the values
Step 3: Bring down the first value and multiply it bt 1
Step 4 : Subtract the next value from the previous answer.
Step 5 : Repeat till the last value.