Answer: Neutron has no charge, electron has a charge and mass. Neutron occurs inside the nucleus where electron is seen outside the nucleus.
Explanation:
Answer:
the reaction will shift towards the “heat”—shifts to the left
Explanation:
To summarize:
o If temperature increases (adding heat), the reaction will shift away from the “heat” term and go in the
endothermic direction.
o If temperature decreases (removing heat), the reaction will shift towards the “heat” term and go in the
exothermic direction.
o NOTE: The endothermic direction is always away from the “heat” term and the exothermic direction is
towards the “heat” term.
Therefore the reaction will shift towards the “heat”—shifts to the left
Answer:
70 mL of 5% HCl and 30 mL of 15% HCl
Explanation:
We will designate x to be the fraction of the final solution that is composed of 5% HCl, and y to be the fraction of the final solution that is composed of 15% HCl. Since the percentage of the final solution is 8%, we can write the following expression:
5x + 15y = 8
Since x and y are fractions of a total, they must equal one:
x + y = 1
This is a system of two equations with two unknowns. We will proceed to solve for x. First, an expression for y is found:
y = 1 - x
This expression is substituted into the first equation and we solve for x.
5x + 15(1 - x) = 8
5x+ 15 - 15x = 8
-10x = -7
x = 7/10 = 0.7
We then calculate the value of y:
y = 1 - x = 1 - 0.7 = 0.3
Thus 0.7 of the 100 mL will be the 5% HCl solution, so the volume of 5% HCl we need is:
(100 mL)(0.7) = 70 mL
Similarly, the volume of 15% HCl we need is:
(100 mL)(0.3) = 30 mL
<u>Answer:</u> The concentration of
comes out to be 0.16 M.
<u>Explanation:</u>
To calculate the concentration of acid, we use the equation given by neutralization reaction:

where,
are the n-factor, molarity and volume of acid which is 
are the n-factor, molarity and volume of base which is NaOH.
We are given:

Putting values in above equation, we get:

Hence, the concentration of
comes out to be 0.1862 M.
Answer: The strength of an acid or alkali depends on the degree of dissociation of the acid or alkali in water. The degree of dissociation measures the percentage of acid molecules that ionise when dissolved in water. He could use universal indicators or litmus paper for this.
i hope this helps you!