Answer:
3 moles
Explanation:
To solve this problem we will use the Avogadro numbers.
The number 6.022×10²³ is called Avogadro number and it is the number of atoms, ions or molecules in one mole of substance. According to this,
1.008 g of hydrogen = 1 mole = 6.022×10²³ atoms.
18 g water = 1 mole = 6.022×10²³ molecules
we are given 36 g of C-12. So,
12 g of C-12 = 1 mole
24 g of C-12 = 2 mole
36 g of C-12 = 3 mole
So 3 moles of C-12 equals to the number of particles in 36 g of C-12.
Answer:
C. 26.4 kJ/mol
Explanation:
The Chen's rule for the calculation of heat of vaporization is shown below:
![\Delta H_v=RT_b\left [ \frac{3.974\left ( \frac{T_b}{T_c} \right )-3.958+1.555lnP_c}{1.07-\left ( \frac{T_b}{T_c} \right )} \right ]](https://tex.z-dn.net/?f=%5CDelta%20H_v%3DRT_b%5Cleft%20%5B%20%5Cfrac%7B3.974%5Cleft%20%28%20%5Cfrac%7BT_b%7D%7BT_c%7D%20%5Cright%20%29-3.958%2B1.555lnP_c%7D%7B1.07-%5Cleft%20%28%20%5Cfrac%7BT_b%7D%7BT_c%7D%20%5Cright%20%29%7D%20%5Cright%20%5D)
Where,
is the Heat of vaoprization (J/mol)
is the normal boiling point of the gas (K)
is the Critical temperature of the gas (K)
is the Critical pressure of the gas (bar)
R is the gas constant (8.314 J/Kmol)
For diethyl ether:



Applying the above equation to find heat of vaporization as:
![\Delta H_v=8.314\times307.4 \left [ \frac{3.974\left ( \frac{307.4}{466.7} \right )-3.958+1.555ln36.4}{1.07-\left ( \frac{307.4}{466.7} \right )} \right ]](https://tex.z-dn.net/?f=%5CDelta%20H_v%3D8.314%5Ctimes307.4%20%5Cleft%20%5B%20%5Cfrac%7B3.974%5Cleft%20%28%20%5Cfrac%7B307.4%7D%7B466.7%7D%20%5Cright%20%29-3.958%2B1.555ln36.4%7D%7B1.07-%5Cleft%20%28%20%5Cfrac%7B307.4%7D%7B466.7%7D%20%5Cright%20%29%7D%20%5Cright%20%5D)

The conversion of J into kJ is shown below:
1 J = 10⁻³ kJ
Thus,

<u>Option C is correct</u>