Answer:
[EtOH] = 2.2M and Wt% EtOH = 10.1% (w/w)
Explanation:
1. Molarity = moles solute / Volume solution in Liters
=> moles solute = mass solute / formula weight of solute = 9.8g/46g·mol⁻¹ = 0.213mol EtOH
=> volume of solution (assuming density of final solution is 1.0g/ml) ...
volume solution = 9.81gEtOH + 87.5gH₂O = 97.31g solution x 1g/ml = 97.31ml = 0.09731 Liter solution
Concentration (Molarity) = moles/Liters = 0.213mol/0.09731L = 2.2M in EtOH
2. Weight Percent EtOH in solution (assuming density of final solution is 1.0g/ml)
From part 1 => [EtOH] = 2.2M in EtOH = 2.2moles EtOH/1.0L soln
= {(2.2mol)(46g/mol)]/1000g soln] x 100% = 10.1% (w/w) in EtOH.
Magnesium dichromate is the correct name of the compound MgCr₂O₇.
<h3>What is Molecular Formula ?</h3>
The chemical formula that gives total number of atoms of each element in one molecule of a compound is called Molecular Formula.
<h3>What is Oxidation State ?</h3>
Oxidation state is also known as oxidation number. It is defined as the atom is equal to the total number of electrons which have been removed from the element in order to form chemical bond with other atom.
Magnesium dichromate contains the Magnesium ion and chromate ions. Magnesium ion is represented as Mg⁺². Oxidation state of magnesium is +2. The chromate ion is represented as Cr₂O₇⁻². Oxidation state of chromate ion is -2.
Thus from the above conclusion we can say that The correct name of the compound MgCr₂O₇ is Magnesium dichromate.
Learn more about the Oxidation State here: brainly.com/question/8990767
#SPJ4
An experiment that would show that intramolecular forces are stronger than intermolecular forces will be heating a block of ice in a sealed container then allowing it to change to steam.
Intramolecular forces are the forces of attraction that hold atoms together within a molecule. Intramolecular forces require a high amount of energy to splits atoms or molecules in a chemical bonding.
Intermolecular forces are weaker forces of attraction that occur between molecules. They require lesser energy to splits molecules compared to intramolecular forces.
An experiment that would show that intramolecular forces are stronger than intermolecular forces will be heating a block of ice in a sealed container then allowing it to change to steam.
In the process, the energy required to change the state from ice to steam water is more than intermolecular forces.
Thus, we can conclude that this experiment shows that the intramolecular forces are stronger than the intermolecular forces.
Learn more about Intramolecular forces here:
brainly.com/question/13588164
Answer:
226.8 mg of mupirocin powder are required
Explanation:
Given that;
weight of standard pack = 22 g
mupirocin by weight = 2%
so weight of mupirocin = 2% × 22 = 2/100 × 22 = 0.44 g
so by adding the needed quantity of mupirocin powder to prepare a 3% w/w mupirocin ointment
mg of mupirocin powder are required = ?, lets rep this with x
Total weight of ointment = 22 + x g
Amount of mupirocin = 0.44 + x g
percentage of mupirocin in ointment is 3?
so
3/100 = 0.44 + x g / 22 + x g
3( 22 + x g ) = 100( 0.44 + x g )
66 + 3x g = 44 + 100x g
66 - 44 = 100x g - 3x g
97 x g = 22
x g = 22 / 97
x g = 0.2268 g
we know that; 1 gram = 1000 Milligram
so 0.2268 g = x mg
x mg = 0.2268 × 1000
x mg = 226.8 mg
Therefore, 226.8 mg of mupirocin powder are required