Answer:
The approximate bond angle around the central carbon atom in acrolein is 120°.
Explanation:
The structure of acrolein is shown in the attachment. From the structure, we can deduce that the central carbon atom is in an sp2 hybridization (Atoms with a double bond hybridize in an sp2 fashion).
Atoms with sp2 hybridization have trigonal planar geometry, in this kind of hybridization, bonds are oriented the farthest away possible from each other, to minimize overlapping and the angle that allows that is 120°.
True, because if it wasn't a chemical reaction it would have proceeded to stay the same. but it begins to bubble.
sorry if this isn't the best answer I'm trying my best.
Hey there :)
We can see that the solubility of salt increases with increasing temperature. This happens with most substances.
To find out the maximum mass of copper sulfate that can be dissolved in water at these temperatures, just interpret the graph.
Considering Y-axis as g copper sulfate/100 g water and the X-axis as the temperature in °C:-
<u>1)</u>
a: <u>0 °C - 14 g of copper sulfate/100 g of water</u>
b: <u>50 °C - 34 g of copper sulfate/100 g of water</u>
c: <u>90 °C - 66 g of copper sulfate/100 g of </u><u>water</u>
<u>2)</u> From the graph, we can infer that temperature affects the solubility of the salt.
<em>Answered</em><em> </em><em>by</em><em> </em><em>Benjemin360</em><em> </em>:)
HEY BUDDY THE ANSWER IS
It processes the environment and sends out signals.
From the conversion of units:
1 cm^3 is equivalent to 1 mL
1 L is equivalent to 1000 mL
therefore,
to convert from liter to cm^3, we simply multiply by 1000.
Note that the multiplication will be done in the denominator.
Based on this:
density = (0.625 g/l) x (1g/1000 cm^3) = <span> 0.000625 g/cm^3
= 6.25 x 10^-4 g/cm^3</span>