The K.E. of that mass at this height is 40J.
Answer:
a) 7200 ft/s²
b) 140 ft
c) 3.7 s
Explanation:
(a) Average acceleration is the change in velocity over change in time.
a_avg = Δv / Δt
We need to find what velocity the puck reached after it was hit by the hockey player.
We know it reached 40 ft/s after traveling 90 feet over rough ice at an acceleration of -20 ft/s². Therefore:
v² = v₀² + 2a(x − x₀)
(40 ft/s)² = v₀² + 2(-20 ft/s²)(100 ft − 10 ft)
v₀² = 5200 ft²/s²
v₀ = 20√13 ft/s
So the average acceleration impacted to the puck as it is struck is:
a_avg = (20√13 ft/s − 0 ft/s) / (0.01 s)
a_avg = 2000√13 ft/s²
a_avg ≈ 7200 ft/s²
(b) The distance the puck travels before stopping is:
v² = v₀² + 2a(x − x₀)
(0 ft/s)² = (5200 ft²/s²) + 2(-20 ft/s²)(x − 10 ft)
x = 140 ft
(c) The time the puck takes to travel 10 ft without friction is:
t = (10 ft) / (20√13 ft/s)
t = (√13)/26 s
The time the puck travels over the rough ice is:
v = at + v₀
(0 ft/s) = (-20 ft/s²) t + (20√13 ft/s)
t = √13 s
So the total time is:
t = (√13)/26 s + √13 s
t = (27√13)/26 s
t ≈ 3.7 s
Answer:
The Answer is gonna be According D.separate atoms from their electrons
Answer:
It would be lower than because, if the boiling point of that element is 77 Kelvin degrees then if it isn’t at boiling point it would automatically be cooler than that. Even if it’s at its original state. The normal temperature of Liquid Nitrogen is really cold -320.8 degrees.
YOU’RE WELCOME