Answer:
The correct answer to the question is
B. It always decreases
Explanation:
To solve the question, we note that the foce of gravity is given by
where
G= Gravitational constant
m₁ = mass of first object
m₂ = mass of second object
r = the distance between both objects
If the mass of one object remains unchanged while the distance to the second object and the second object’s mass are both doubled, we have
= 
Therefore the gravitational force is halved. That is it will always decrease
(a) +9.30 kg m/s
The impulse exerted on an object is equal to its change in momentum:

where
m is the mass of the object
is the change in velocity of the object, with
v = final velocity
u = initial velocity
For the volleyball in this problem:
m = 0.272 kg
u = -12.6 m/s
v = +21.6 m/s
So the impulse is

(b) 155 N
The impulse can also be rewritten as

where
F is the force exerted on the volleyball (which is equal and opposite to the force exerted by the volleyball on the fist of the player, according to Newton's third law)
is the duration of the collision
In this situation, we have

So we can re-arrange the equation to find the magnitude of the average force:

Car A take a time of 2.55hr and car B take a time of 2.14 hr
We know that distance divide by time is speed
here it is given that car A to reach a gas station a distance 189 km from the school traveling at a speed of 74 km/hr
so speed=distance/time
s=d/t
t=d/s
=189/74
=2.55hr
In case of car B it is given that The distance from the is 199.8km, car b is traveling at a speed of 93 km/hr
s=d/t
t=d/s
=199.8/93
=2.14hr
so from the above given data and the formula we solved and found out the time taken by car A is 2.55h and car B is 2.14h
learn more about Speed here brainly.com/question/13943409
#SPJ9
Nice paddling. Thanks for sharing.
Do you have some question to ask ?