D. the wavelengths that the pigmented object after interacting with sunlight
When you rub a balloon against your hair or clothing, electrons that were previously on the hair/clothing will "jump" onto the balloon. Therefore, the balloon now has a negative charge accumulated on its surface.
When you bring that balloon near another balloon with a neutral charge, they will stick to each other, because the electrons on the surface will be attracted to the positive charges on the other. The positive charges that were previously randomly oriented now line up at the surface. However, after some time, the electrons move around back to their former random positions.
Answer:
a) t = 2.64s
b) Vf = -28.7m/s
Explanation:
If the balloon is descending, the velocity is -2.3m/s. So the equation to describe the postion of the falling camera is:

Solving for t, we get:
t1 = -3.1s and t2 = 2.64s We discard the negative time and use the positive one.
The velocity of the camera will be:
Vf = Vo - g*t = -2.3 - 10*2.64 = -28.7m/s
Answer:
E = {(Charge Density/2e0)*(1 - [z/(sqrt(z^2 - R^2))]}
R is radius = Diameter/2 = 0.210m.
At z = 0.2m,
Put z = 0.2m, and charge density = 2.92 x 10^-2C/m2, and constant value e0 in the equation,
E can be calculated at distance 0.2m away from the centre of the disk.
Put z = 0.3m and all other values in the equation,
E can be calculated at distance 0.3m away from the centre of the disk