Answer:
0.94 m/s^2 downwards
Explanation:
m = 70 kg, m g = 70 x 9.8 = 686 N
R = 620 N
Let the acceleration be a, as the apparent weight decreases so the elevator is moving downwards with an acceleration a.
mg - R = ma
686 - 620 = 70 x a
a = 0.94 m/s^2
The amplitude of a wave can be obtained by measuring the distance from the resting position of the wave to its crest. The resting position is half of the distance from the crest to the trough. Given that the distance between the crest and the trough is 3 meters, the amplitude should be half of that, which is 1.5 meters.
Answer:
Our solar system has total eight planets out of which four are inner planets and four are outer planets. The four outer planets are Jupiter, Saturn, Uranus and Neptune. The common characteristics of outer planets is that they are gaseous planets. They are larger on size than the inner rocky planets and are faraway from Sun. They have larger period of revolution around the Sun.
Uranus is a gaseous planet and lies far from Sun and hence has large period of revolution. It takes 84 Earth years to revolve around Sun. This data indicates that Uranus resides in the outer region of the Solar System.
Answer:
I_{total} = 10 M R²
Explanation:
The concept of moment of inertia in rotational motion is equivalent to the concept of inertial mass for linear motion. The moment of inertia is defined
I = ∫ r² dm
For body with high symmetry it is tabulated, in these we can simulate them by a solid disk, with moment of inertia for an axis that stops at its center
I = ½ M R²
As you hear they ask for the moment of energy with respect to an axis parallel to the axis of the disk, we can use the theorem of parallel axes
I =
+ M D²
Where I_{cm} is the moment of inertia of the disk, M is the total mass of the system and D is the distance from the center of mass to the new axis
Let's apply these considerations to our problem
The moment of inertia of the four discs is
I_{cm} = I
I_{cm} = ½ M R²
For distance D, let's use the Pythagorean Theorem. As they indicate that the coins are touched the length of the square is L = 2R, the distance from any spine to the center of the block is
D² = (R² + R²)
D² = R² 2
Let's calculate the moment of inertia of a disk with respect to the axis that passes through the center of the square
I = ½ M R2 + M R² 2
I = 5/2 M R²
This is the moment of inertia of a disc as we have four discs and the moment of inertia is a scalar is additive, so
= 4 I
I_{total} = 4 5/2 M R²
I_{total} = 10 M R²