Answer:
So, the correct answer is <em><u>the strong nuclear force</u></em>. It actually pulls together nuetrons and protons that are in the nucleus. At very tiny distances only, like those inside the nucleus, so, this strong force succeded in dealing with the electromagnetic force, and it basically stops the electrical repulsion of protons from blowing apart the nucleus.
<u><em>Mark as brainlies please, I need a few more :D</em></u>
Potential energy<span> is the </span>energy<span> that is stored in an object due to its position relative to some zero position. It is calculated by the expression PE = mgh where mg is the weight of the book and h is the height. It is calculated as follows:
PE = 50(1) = 50 J
</span>PE = 50(1.5) = 75 J
PE = 50(2) = 100 J
Answer:
The new Coulomb force is q₁q₂/9πε₀r²
Explanation
The coulomb force between the two charges q₁ and q₂ at a distance r in air is given by F = q₁q₂/4πε₀r².
Now, let us assume the material of dielectric constant κ = 9 is placed between them on the side of the q₁ charge. The value of its effective charge is now q₃ = q₁/κ at a distance of d = r/2 from the q₂ charge.
Since we have air between q₂ and q₃, the coulomb force between them is
F' = q₂q₃/4πε₀d²
= q₂(q₁/κ)/4πε₀(r/2)²
= 4q₂q₁/κ4πε₀r²
= 4/κ(q₂q₁/4πε₀r²)
= 4/9 × (q₂q₁/4πε₀r²)
= q₁q₂/9πε₀r²
So, the new Coulomb force is q₁q₂/9πε₀r²
Explanation:
What exactly are u looking for?
Answer:
Explanation:
a) 1.00 - 0.12 = 0.88
m = 1200(0.88)^t
b) t = ln(m/1200) / ln(0.88)
c) m = 1200(0.88)^10 = 334.20 g
d) t = ln(10/1200) / ln(0.88) = 37.451... = 37 s
e) t = ln(1/1200) / ln(0.88) = 55.463... = 55 s