Answer:
24.57 revolutions
Explanation:
(a) If they do not slip on the pavement, then the angular acceleration is

(b) We can use the following equation of motion to find out the angle traveled by the wheel before coming to rest:

where v = 0 m/s is the final angular velocity of the wheel when it stops,
= 95rad/s is the initial angular velocity of the wheel,
is the deceleration of the wheel, and
is the angle swept in rad, which we care looking for:



As each revolution equals to 2π, the total revolution it makes before stop is
154.375 / 2π = 24.57 revolutions
Answer:
Gravitational force increases as the masses of the objects increase and decreases as the distance between the objects increases. Balanced forces acting on an object cause no change in the motion of the object. When unbalanced forces act on an object, the sum of the forces is not equal to zero.
Explanation:
put it in your own words
Answer:
When light travels from one medium to another, the frequency of light does not change. However, the velocity and wavelength change.
Explanation:
Pls mark me as brainliest