Answer:
Magnets can be used in space. ... One class of magnets, called electromagnets, does need electricity to work.
Explanation:
The answer is Photosphere Apex.
Answer:
C. Hb binds O2 more tightly than Mb.
Explanation:
<u>Hb and Mb are both oxygen carrier protiens which contain the heme group. Hb has 4 heme units in 1 moleucle which work via coperative effect. On the other hand, Mb has only one heme unit. </u>
<u>From above theory, statement A and B are correct.</u>
<u>Although the heme group of the Mb is identical to those of Hb, Mb has a higher affinity for carrying oxygen than hemoglobin.</u>
<u>Hence, Statement C is wrong.</u>
Thats why the function of hemoglobin is to transport oxygen and that of myoglobin is to store oxygen.
<u>When a curve is plotted between oxygen accepted and the pressure of the oxygen, Hb shows sigmoidal, whereas Mb shows hyperbolic oxygen saturation curves.</u><u> The statement D is correct.</u>
<u>Bohr effect and various factors decribe the statement : Hb-oxygen binding is dependent on physiological changes in pH, whereas Mb-oxygen binding is not. </u><u>The statement E is also correct.</u>
Answer:
209.98 g of NaOH
Explanation:
We are given;
- Volume of HCl as 3 L
- Molarity of HCl as 1.75 M
We are required to calculate the mass of NaOH required to completely neutralize the acid given.
First, we write a balanced equation for the reaction between NaOH and HCl
That is;
NaOH + HCl → NaCl + H₂O
Second, we determine the number of moles of HCl
Number of moles = Molarity × Volume
= 1.75 M × 3 L
= 5.25 moles
Third, we use the mole ratio to determine the moles of NaOH
From the reaction,
1 mole of NaOH reacts with 1 mole of HCl
Therefore;
Moles of NaOH = Moles of HCl
= 5.25 moles
Fourth, we determine the mass of NaOH
Molar mass of NaOH = 39.997 g/mol
Mass of NaOH = 5.25 moles × 39.997 g/mol
= 209.98 g
Thus, 209.98 g of NaOH will completely neutralize 3L of 1.74 M HCl