Answer:
If the volume of a gas increased from 2 to 6 L while the temperature was held constant, <u><em>the pressure of the gas decreased by a factor of 3.</em></u>
Explanation:
Boyle's law that says "The volume occupied by a given gaseous mass at constant temperature is inversely proportional to pressure." This means that if the pressure increases, the volume decreases, while if the pressure decreases, the volume increases.
Boyle's law is expressed mathematically as:
Pressure * Volume = constant
or
P * V = k
To obtain the proportionality factor k you must make the quotient:

k= 3
This means that <u><em>if the volume of a gas increased from 2 to 6 L while the temperature was held constant, the pressure of the gas decreased by a factor of 3.</em></u>
Answer:
1.31x10¹¹ g/cm³
Explanation:
The mass of the proton is equal to the mass of the neutron, which is 1.67x10⁻²⁴ g, so the mass of the alpha particle is 4*1.67x10⁻²⁴ = 6.68x10⁻²⁴ g.
1 fm = 1.0x10⁻²³ cm, thus the radius of the alpha particle is 2.3x10⁻¹² cm. If the particle is a sphere, the volume of it is:
V = (4/3)*π*r³, where r is the radius, so:
V = (4/3)*π*(2.3x10⁻¹²)³
V = 5.1x10⁻³⁵ cm³
The density of the particle is the how mass exists per unit of volume, so, it's the mass divided by the volume:
d = 6.68x10⁻²⁴/5.1x10⁻³⁵
d = 1.31x10¹¹ g/cm³
Answer:A(n) molecule that is made up of atoms that are chemically bonded is the smallest recognizable unit of a compound.
Explanation:
<h3><u>Answer and explanation;</u></h3>
Ideal gas law is the mathematical relationship among pressure, volume, temperature, and the number of moles of a gas.
The ideal gas law is given by;
PV=nRT, where
P is the Pressure
V is the volume of the gas.
n is the number of moles
R is the gas constant and
T is the temperature