Answer:
using a more concentrated potassium hydroxide
Explanation:
<em>The option that would likely increase the rate of reaction would be to use a more concentrated potassium hydroxide.</em>
<u>The concentration of reactants is one of the factors that affect the rate of reaction. The more the concentration of the reactants, the faster the rate of reaction. </u>
Granted that there are enough of the other reactants, increasing the concentration of one of the reactants will lead to an increased rate of reaction.
Hence, using a more concentrated potassium hydroxide which happens to be one of the reactants would likely increase the rate of reaction.
<span>0.310 moles
First, look up the atomic weights of the elements involved.
Atomic weight carbon = 12.0107
Atomic weight hydrogen = 1.00794
Atomic weight sulfur = 32.065
Molar mass (C3H5)2S = 6 * 12.0107 + 10 * 1.00794 + 32.065
= 114.2086 g/mol
Moles (C3H5)2S = 35.4 g / 114.2086 g/mol = 0.309959145 mol
Since there's just one sulfur atom per (C3H5)2S molecule, the number of moles of sulfur will match the number of moles of (C3H5)2S which is 0.310 when rounded to 3 significant digits.</span>
Did the someone else have answers? If not then ask again in hopes of someone checking yours out :)